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PREFACE

The extensive sampling theory paper was written after the USDA granted the author a sabbatical
scholarship at Texas A&M University in 1965 to work under Professor H.O. Hartley in multiple
frame theory and J.N.K. Rao in sampling theory. The purpose of this account of theory is to
supplement lectures in developing the building blocks of sampling, as are likely to be needed in
applied theory. Several contrasting approaches are used in showing how the theory may be
developed. The logic of these alternative derivations of the basic theory and formulas is to provide
the student with greater exposure to different derivations in estimating parameters is frequently
helpful in complex designs since sometime there is an easier approach.

The elements of the theory covered herein might be found in either a beginning or advanced
sampling theory course, but the goal is to present the topics at an introductory level assuming only
some previous exposure to sampling methods for motivational purposes. In addition, some limited
background in mathematical expectation and basic probability is helpful.

This particular effort is largely the result of the direct influence of H.O. Hartley and J.N.K. Rao
who stimulated work and interest in sampling by their teachings. The influence of writings by
Cochran, Hendricks, Des Raj, Jessen, Hansen, Hurwitz, and Madow have also been substantial. In
addition, many papers have influenced both the point of view adapted as well as the material
presented. I acknowledge these sources and others which I may have unintentionally omitted. This
presentation is intended for the student working at the Masters Degree Level who may only take a
one term course in the theory of survey sampling.

Special thanks are due to Mrs. Sue Horstkamp and Mrs. Mary Ann Lenehan for their excellent
typing and help in completing this monogram.

HAROLD F. HUDDLESTON
Washington, DC
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Chapter 1. Probability and Expectation

1.0 Introduction
Since probability forms the basis of sampling theory, we begin with

a presentation of some results ~sed in sampling. This topic is followed
with some of the important results on expected values. Both topics in
the context of sampling relate to all types of populations and parameters,
thus the classical theory of sampling is regarded as distribution free.
However, confidence interval statements about the sample statistics do
assume that their derived distributions are known. In practice, reliance
is placed on the central-limit theorem and estimators which approach
normality.

Modern sample surveys are multicharacteristic (multiple content
items) in practice and it is frequently not practical to use many of the
results available from general estimation theory. Consequently, the use
of specific distributions and the method of maximum-likelihood are gen-
erally not considered. Likewise, an estimator which is -cheaper or
operationally easier to handle, is frequently preferred to another which
requires considerable computations and may have a smaller variance.
However, it is not correct to assume that more powerful estimation theory
can not be employed to good advantage where they are appropriate and
there is a high level of expertise and resources available for their use
in surveys.

1.1 Sample Space and Events
We are concerned with random samples or experiments in which the

outcome depends on chance. The sample space is made up of elements which
correspond to the possible outcomes of the conceptual experiment. The
elements depend on the sample and frame sizes together with the prob-
ability selection procedure. The outcome of the sample selection, with
the associated observed characteristics, correspond to one and only one
element of the sample space(S). An event is a subset of S. The event E
occurs if the outcome of the experiment corresponds to an element of the
subset E.
Event E K aggregation of all points containing E
Event E - all sample points not contained in E is called the

complementary event



The values 0 and 1 do not imply
event. This is the result of
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Event El+E2 - The totality of sample points contained in either El or
E2 (El+~2 is called the union. i.e •• ElUE2)

Event El.E2 - aggregation of sample points contained in both of the
events El and E2 (ElE2 is called the intersection. E10E2>

The events E1 and E2 are mutually exclusive if they have no points in
common.

It is convenient, often. to speak of the union or intersection of
an infinite, but countable, set of events; or a set of events as being
countable. If only a finite number of positive integers is used in this
counting, the set is countable-and finite. If all positive integers are
used, the set is infinite, but countable. An event is associated with a
particular integer by setting the integer as a subscript on the symbol
for the event. Thus

Al'A2' ••••• '~_1'~ is countable and finite set of events; while
AI'A2 ••••••••••••.• represents a countable and infinite set of events.

1.2 Probability
To each element in S is assigned a number, P(ef)' called the prob-

ability of ei which depends on the model used in setting up the experi-
ment, subject to the restrictions:

(a) EP(ei) - 1 or peS) - 1
(b) P(ei) ~ 0
(c) P(eiuej) - P(ei) + P(ej> i~j
If E is any event, then O~P(E)~l.

either an impossible event or a certain
some elements of S being assigned a probability of O. In problems in-
volving uncountably infinite sample spaces there must exist events that
arc not impossible but yet have probability O. If we insisted that the
probability of each element in the space be positive, i.e •• P(ei»O. then
only an empty event would have probability 0, and only the whole sample,
space ~ould have probability 1. The assignment of probabilities to the
elements in the space may vary for different real-world situations to
which the theory is applied.
Some Basic Laws of Probability:

If A is a random event, we write peA) for its probability. In terms
of the elenlcnts in the probability space S, peA) is the ratio of the



1-3

number of elementary events (elements of S) favorable to A divided
by·the total number of elementary events.
Law of Total Probability (Pairwise Independent events). The prob-
ability of the union of a countable set of mutually exclusive events
is the sum of their probabilities.

(1)
N

- t peAt) sets are countable and finite,
i-I

G.

(2)

••••(1') P(UlAt) - t peAt) sets countable and infinite
i-I

Certain theorems are consequences of the above l~.
A. If A and B are events, and if AcB (A subset of B), then P(B-A)

- P(B)-P(A)
B. peA) - l-P(A} for every event A.
C. P(O) - 0

D. If A and B are events, and if AcB, then P(A}~P(B)
E. If Al,A2 •••are events (not necessarily mutually exclusive)

F. If Bl' B2 •••are event6, {f BlcB2c and if B - U~Bi' then
PCB} - 11m P(Bi)i-+cD

••If Bl' B2 •••are events, if Bl~B2~ and if B - RlBt' then
PCB) - lim P(Bt}.

t-+cD

Law of Total Probability (Arbitrary random events). Let Al' A2' •••~'
where N~3, be arbitrary random events.

N N N N N+1P(U1At} - t peAt) - t P(AtAj} + t P(AtAj~} + (-l) P(AlA2 •••~}
t-l t;j t;j;k

(There are N terms in the expression with each term smaller (or equal
to) than the preceding term}. The terms after the first involve com-
pound events which will be discussed below.
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Compound Events and Probabilities:
If two events A and B occur simultaneously (joint occurrence),
then we have a compound event. In terms of sets, we write
AuB - AB + AB + AB • A + B - AB.
In terms of probabilities, we write based on (2) above
P(AuB) - peA) + PCB) - P(AB), or based on (1)
P(AuB) - P(AB) + P(AB) + P(AB), since AB, AB, and AB are non-
overlapping sets. The above partitioning of sets generalizes
to compound events involving N arbitrary sets.
Compound Probability. If.A and B are any two events, their joint
probability is P(AB) = P(B)P(A/B)=p(A)p(n/A), or

P(AB) - P(AuB)-P(AB)-P(AB); for N events
(3) P(AIA2."~) - P(Al)P(A2IAl)p(A3rAIA2)···p(~IAl··.~-l)

where we define p(AIB), P(A2/AI), ,P(A3IAIA2) etc. as condi-
tional probabilities; or restated (3) becomes

(3#) P(AIA2"'~) - P(AIA2···~_1) P(~IAIA2···AN_l)·
Conditional Probabilities. If we consider two events A and B,
we mean by the conditional probability of A given B that we have
redefined the sample space to be only those elements contained in
event B, where B is a subset of the sample space S. Consequently,
we define
(4) p(AIB) - P(AB) if PCB) ~ 0, and immediately we havePCB)

P(AB) a p(AIB) PCB) • peA) p(BIA) even if peA) - 0 or PCB) - O.
The conditional probability p(AIB) im~lies that the event A is
of interest only if B has occurred; however, we can define
P(A/B) in (4) in terms of the probabilities in the total sample
space S. That is, for three events from the same sample space S

Bayes Theorem. If the events AI' A2 •••satisfy our previous assump-
tions and P(B»O, then the posteriori probability of Ai given B has
occurred is

(5)
P(Ai)P(HIAi) P(Ai)p(BIAi)

P(AiIB) • PCB) - rp(Ai)p(AirBf where P(Ai) is called
a priori probability.
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Independent Events. Two events A and B are said to be independent
events if and only if
(6) p(AB). P(A)P(B), otherwise they are said to be dependent;

and for K events

1.3 Samples and n-Tuples
A basic tool for the construction of sample description spaces of

random selection is provided by the notion of an n-tuple. An n-tuple
(Zl,Z2""Z ) is an array of n symbols with first, second, and so on up

th nto the n component. The order in which the components are written is
of importance since sometimes we wish to speak of ordered n-tuples.
Two n-tuples are identical, if and only if, they consist of the same
components written in the same order. The usefulness of n-tuples
derives from the fact that they are convenient devices for reporting
the results of a drawing of a sample of size n.

(a) Sampling with replacement - The sample is said to be drawn
with replacement (W.R.) if after e~ch draw, the unit selected
is returned to the frame so its chance of selection is the
same in each successive draw as on the first draw.

(b) Sampling without replacement - The sample is said to be drawn
without replacement (W.O.R.) if after each draw the unit
selected is removed from the frame so its changes of selec-
tion become zero in each successive draw.

The basic ,principles of cOi.lbinatorialanalyses are useful in count-
ing sets of n-'tuples for various values of n that may arise.

The size of the set A or ordered n-tuples is given by the product
of the numbers Nl,N2, •••Nn, or Size (A) - NlN2 •••Nn
where Nl • number of objects that may be used as the first component,

N2 • number of objects (if it exists) that may be second components,

•
•
• thN - number of objects (if it exists) that may be the n com-n

ponent of the n-tuple.
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The number of ways-1n which one can draw a sample of n objects
from ~I ilistinguishable objects is: t1(H-l)••••• (H-n+l) or (1I~~): if

• nsampling is done without replacement, and M if the sampling is done
with replacement. An important application of the foregoing relations
is the problem of finding the number of subsets of a set.

The number of subsets of S of size K, multiplied by the number of
samples that can be drawn without replacement from a subset of size K,
is equal to the number of samples of size K that can be drawn withoutN:replace~ent from S itself, or ~.K: • (N-K): •

N : _ (NKl ) •Therefore, XK • K:(N-K): These quantities are generally

called the binomial coefficients where the binomial forn is (a+b)N.
From these coefficients, one may determine how many subsets of a

set of size N that can be formed.

Thus, the number of events (including the impossible event) that
can be formed from a sample description space of size N is 2N (i.e.,
P owe r se t .

Another counting problem is that of finding the number of partitions
of a set of size N into setsS-(l,2, •••N). Let r be a positive integer,
and let Kl' K2 ••• ,Kr be positive integers such that Kl+K2+ ••-.+Kr • N,
we speak of a division of S into r subsets (ordered) such that the first
subset has size Kl' second size K2' and so on.

The number of ways one can partition a set of size N into r ordered

N'which also may be written as K 'K I· K I

1· 2···· r·

This is kno~~ as the multinomial coefficient

Nwhere the multinomial form is (a1+a2+ •••+ar) • For an event ~, for KaO,1,2,

•••n, where the sample will contnin exactly K objects of a particular kind,
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then N (-\) - (~~) (~=~\~where H - total objects of all kinds in the
frame, and !~~ •• the objects of the type we are interested in. Conse-
quently, the probability of exactly K objects is:

P(~) •• for sa~p1es drawn without replacement.

This is also the probability for ordered samples dra\m wi thout replace-
ment. Houcver, in sampling with replacement for.an unordered sa~ple of
size n,

P(,\) -

.4 Expectation
By definition, an expected value i~ the population mean for a

parameter. Let U be a randoT:lvariable taking values Pi (i"1,2, ••• ,K)

K
with pro~ability P(U~i)(ial, ••• ,K), ~P(U~i) - 1. Then the exnected

value of U is defined as

(7)

(8)

K
E(U) - ~ Pi P(U-Pi) - U

i-l

2 K 2 2 -2 2E(U ) - ~ Pi P(U-Pi) ••a + U where a is defined in 1.5.
1-1

A random variable is a characteristic of a random event.

SOMe useful propositions concenling operations with expected values
are given now

E(a) - a, if a is a constant
E(aU) ~ aE(U), if a is a constant
E(~p i) - ~E(lJi)
E(~aiPi) - ~aiE(lJi)' if the ai's are constants

i
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Using these results

E(aU+b) - aE(U)+b, a and b' are constants

K
E[~(U») - r P(U9J i)~(U i) \There ~(U) is a function of the random

i-I

variable U.
If we have a second rnndon variable II taking values wj(jcl,2, •••I)

I
,,,ithprobabilities P(H=t"j) and r P(\.!=t.1j)•• 1. The joint probability

j-l

of U and \-1 is given by P(U=Ui, l{=t"j)=PCL"H)where r:p(U9J i' \.]cwj)- 1.
ij

Also P(UCUi) C LP(U~ i' l!=W
j
), and

j

P O':-w j) - LP (Ucu i' U=t"j )
i

Expectation of the SUM of two random variables E(U+lnc:CCU)+E(H)
which we generalize to n random variables Ul, U2""U~

n
(9) E(U1+U2+..•+UN)" r E(Vi)i-I

Expectation of the product of two independent random variables

(10) E(W) - E(U)EO-l), and
(11) E(f1(U)f2(W») • E[fICU)]E[f2(H») if fICU) and f2(W) are any

two functions of the independent random variables U and W.
Expectation of one random variable divided by a second random variable

U E(U) Cov C*, l-1)
(12) E(-) •• -- - ---W E(W) E(W)
Conditional Expectation. We consider the expectation of any two

random varlables l-land V where it is knOt"" that U has occurred •

•• Wj r (H-l-l j V·•..i)
(13) E(W/U) ••L ------------------ , orj P(U=ui)

- ~ l-lj P(\~:\ljIV=jJi)'
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We may restate the expectation E(Ul1) for any two random variable.
(1'4)E(mol) - E[Uf;:(\-lIU)]- E[UE2(W)] - EhJiE(Wil~i)]

where E2 is the conditional expectation for a given va1ue(s) of U
which is co~~only written in this way for brevity. The RHS of (13)
may be written, for the same reason, in te~s of conditional expec-
tation as E(Uln - E1E2 wherl! the subscripts land 2 indicate the order
in which the operations occurred.
Decomposition of total expectation given in (7)

(15) E(U) - E[E(UIW)] since

K
- E[E~iP(U~iIWj)]

i

Conditional expectation is frequently easier to use in evaluating the
total expectation of a random variable in complex survey designs.

1.5 Variances and Covariances
By definition, a variance of a random variable U with expectation

Uis

U1,U2, ••• ,Un is

n
(19) V(EaiUi)

2where a is commonly used to denote V(U).
(17) V(aU+b) • a2v(U) where a and b are constants, consequently

their variance is zero.
By definition, a covariance of two random variables U and W with expec-
tation U and W is

(18) Cov(U,W) - E(~i-U) (Wj-W)P(U"~i ,lol""Wj)
i ,j

• E[(U-U) (W-W)] - E(UW)-E(U)E(W)
Obviously, the variance is a special case of the covariance where the
same variable is involved.
The variance of a linear sum L· alUl+a2U2+ •••+anUn of random variables

- EI aiaj Cov(Ui,Uj) which can be restated in terms
ij

of variances and covariance as
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(19 .•.•)

where P ij
• Cov(Ui,Uj)

a(ui)a(uj)

The covariance of two linear sums U-alU1+a2U2+ •.•+amUm and
W • blW1+b2W2+ •••+bnWn is

The variance of a product of two independent random variables is
often needed. We express each variable (X and Y) in a more useful form.

- X(X-X) -Let X - X + ------ - X(l+~x)
X

Y • y + Y(Y-Y) - Y(l+oy)
Y

(21) V(XY) • E[xy_xy]2 a (xy)2 E[ox+oy+~xoy]2

• (xy)2 [veX) + V(Y) + V(X)V(Y)]x2 ~2 X2y2
(21') V(XY) - [E(y)]2 VeX) + [E(X)]2 V(Y) + V(X)V(y)

The variance of a product of any two random variables

(22) V(XY) • y2 VeX) + x2 V(y) + 2i~Ell + 2XE12 + 2YE21+ E22 - Eil

where Eij • E[(nX)i(~y)j] and ~X - X-X, ~y - Y-X.

An unbiased estimate of X·Y is given by

~ !XY - (nxy xiYi). n-l
n

The variance of one random variable divided by a second random
variable is given under Section 1.8 below.

1.6 Conditional Variances and Covariances
Using (18) it is easy (at least possible) to obtain the covariance

of two random variables in terms of conditional expectation. The
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covariance of two rando~ variables U and W where they are conditioned
by H may be expressed as

(23) Cov(U,W) •• El Cov2(U,W) + Covl(E2U,E2W)

where Cov2(U,W) •• E(uwIHj) - E(uIHj)E(wIHj>
El[Cov2(U,W)] •• IP(Hj> Cov2(rlW)

j

E2(U> •• E(uIHj>

E2(W) •• E(wIH
j
>

Since the variance is a special case of the covariance, we may
state the variance in terms of conditional expectations using (23).

(24) Cov(U,U) •• V(U) •• E1V2(U> + V1E2(U)

1.7 Distribution of Sa~ple Mean
Generally, interest centers on an estimate of the population mean

p with an estimate of a being needed for probability statements on the
lJ

precision of the sarn~le mean X (or the total NX). While unbiased esti-
mates of these parameters are readily obtained for all population based
on expectation operations, two fundamental principles are required for
making probability statements which depend on the population from which
the random variable X is selected.

Many random variables possess normal distributions, at least
approximately. By using probability and distribution theory, it is
possible to derive the distribution of X when X is selected from a
normal distribution. The mathematical results are expressed in the
form of a theorem.

Theorem: If X is selected from a normal distribution with mean lJ

and standard deviation 0, then the sample mean X, based on a random
sample of size n, will possess a normal distribution with mean lJ and
standard deviation o/~

The distribution of i given by this theorem is called the sampling
distribution of X because it represents the distribution of means obtained
by repeated samplinR from a fixed population of X's and a given sample
size n.

The distribution of X when X is selected from a non-normal distri-
bution depends on the non-normal distribution sampled. llowevp.r,the
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Central Limit Theorem provides a satisfactory basis for dealing with
the distribution of X without being concerned about the nature of the
distribution of X for most pr~ctica1 problems. This theorem states
that under very mild assumptions (the mean and variance exist) the
distribution of X approaches a normal distribution as the sa~ple size,
n, increases. The results (Ifsampling experi~ents fron many popula-
tions of X's and for s~all values of n (10 to 20) support t~e theorem.

Theorem: If X possesses a distribution with mean ~ and standard
deviation a, then the sample mean X, based on a random sample of size
n, will possess an approximately normal distribution with t:lean~ and
standard deviation allfl, the approximation becc'ming increasingly good
as n increases.

These two theorems permit one to calculate the probability that ~
will lie in any specified interval by transforming the observed mean to
a standard normal distribution with mean zero and standard deviation of
on-e and utilizing tables of the standardized nomal distribution. How-
ever, these theorem are normally used to make interval estimates about
the parameter~. The interval estimate is constructed so the probability
of the interval containing the parameter can be specified. Such inter-
vals are normally constructed so the probability is high so that the
par~eter will be in the stated interval and is referred to as the

is aconfidence interval for the parameter. That is, X ±~ is used to
vn

define the upper and Im ..•er values of the confidence interval where
(I-a) indicates the probability that the parameter will lie in the
interval in repeated sampling. If the sample size is small (variance
degrees of freedom less than 30), a value t from the Student t-a
distribution is used in place of a from the normal distribution.a

1.8 Use of Approximation Techniques
The Taylor series is occasionally a useful devise for evaluating

certain expressions approximately, such as, encountered in evaluating
expectations. Since the remainder term may be evaluated in the series,
the degree of approximation can be determined.
(A) If f(X) and its first n+1 derivatives are continuous in the closed

interval containing x c a, then
, fn(a) nfeX) • f(a) + f (a)(x-a) + ••••+ ---,- (x-a) + R +1~ n. n
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The size of the remainder may be estimated 1f

Ifn+l (t)1 ~ H when a < t < X

MnT
x
I (x-t)n dta

n+l
M(~~-11)., ----(n+l)!

However. there exist other forms of the remainder which hold under
slightly less stringent assumptions. We may extend the version of
Taylor's formula to several variables.

This technique 1s most commonly used in evaluating the expres-
sion for the ratio of lvo random variables or a complex function of
one or several random variables and their variances. In determining
a mean value for f(X). "a" is replaced by E(X) before taking expec-
tations. The expression for f(X) is squared and written as a
Taylor's series ,.then taking the expectations to find Ef2 (X). The
variance of any function is Ef2(X)'-[Ef(X)]2. The use of "a"., E(X)
can be justified on the basis that if E(X) is a maximum likelihood
estimator, then f[E(X)] is a maximum likelihood estimator of f(X).
~~eTe X is a normally distributed variable, E(X) is the maximum
likelihood estimator. The variance of the division of one random

is given below.variable by a second random variable
First approximation

U 1 n ij2
(25) V(W-) ., ;(1N-) -2

W

[V(U) + V(W) _ 2Cov(U,\n]

ij2 W2 W
W-Wwhich holds for n large enough so Ow ., -=- «1

W
holds. If

W is the mmp1e mean (i.e., W), then the coefficieot of
variation is frequently much less than 1. The approximation
is quite good if Ow ., .1.

(B) An alternative way of looking at the variance of a ratio which
employs the Taylor's series 1s:

E(U) ij "Let R - ---- .,- , and i -~for the sampleE(W) ~ w
~ ij ;-RwR-R----a----
W W W
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If n is sufficiently large, we may replace w by W in the denominator
so the expected bias is zero, or we may write w • W + (w - W).
Then R - R lJ - Rw.--

w
(1 + w-W)-l

W.
and expand the term in parenthesis by a Taylor's series.
A ~_~ - w (- 1)2
R - R _ -"_- [1 _ ~ + w-l ]W W W2 -•••.•••

lolhenwe square this expression and take expectation we obtain an approx-
imation for the variance. This e~pression is complicated but it sim-
pUfies if U and H have a bivariate normal distribution and provides a
means of studying the nature of the approximation. The usual (or first)
approximation is based on retaining only· the first term in the brackets.

1.9 Three Sampling Schemes for Sinple Random Sampling
Sche~e A: A fixed number of n units is selected with equal

probability and with replace~ent at each draw.
Scheme B: A fixed number of n units is selected with equal

probability at each draw and without replacement. Everyone of the (N)
n

distinct samples s has an equal chance of being selected.
n

Scheme B': Selection is continued with replacement and with equal
probability until the desired number n of distinct units is obtained.

The scheme Band B are equivalent in the sense that the probability
of selecting a sample s is the same for both schemes, provided the esti-n
mators are based only on distinct units. Usually scheme B is referred to
as simple random sampling without replacement.

1.10 Niscellaneous R.esults
On Expectations:

(a)

2 2
• 0 + II

2
• ~+ 2n JJ

EI1:aiXi] • 1:aiE(Xi), 8i a constant

E(XiX) ~ E(Xi)E(X) due to dependency

E(Xi-JJ)(Xj-ll)a 0 i ~ j

E(a) • a, E(a2) • a2, Veal • 0, and Cov(X,a) • 0
where a is constant

(b)

(c)

(d)

(e)

(f)

(g)

(h-k)

E(X) - l.I

E(X2)
E(i2)

n
E[(1:X)2] • 222no + n l.I



(1)

(m)
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On Identities:

+X n

t(X1-X) • 0
2 -2(EXi) t n - nX

t(X _X)2 - t(X -X)X
i i i

tXij • Xj 1.

••• X
n

Double Summation:

• X ••



b a b
- t (tx1j) - r ~~

j-l i-I j-l·j

• X ••

- X ••

]-16



N
1: Y - Y

i-l i

mean is:
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Chapter II. Single Stage Sampling

2.0 Introduction
Single stage selection is.the basic building block in samplin~

theory. In practice. there are very few surveys or experiments for which
the design employed could be called a single stage sample. Instead,
theory of single stage sampling is applied at each of several stases.
The use of stages in sampling is the result of the inability or cost of
directly selecting from all N units in the frame. Even where all N units
are accessible for sampling, the lack of homogeneity of the units gener-
ally dictate some other method Df sampling such as stratification which
will give greater precision for less cost.

Two different approaches for deriving estimators of population
totals and means are presented. These are: (1) the method of weight
variables, and (2) the expectation of the characteristic value. In the
first case, the random variable is the weight associated with each of
the N units in the universe which depends on the method of selecting
units and the characteristic value of the unit is treated as a constant.
In the second case, the random variable is the characteristic value
which is associated with each of the N units in the universe. Method 1
is useful since it enables us to use standard results from infinite
population theory in constructigg estimators.

2.1 Sampling \-lithReplacement - (Uethod 1)
Notation

Universe of Distinguishable Units
Unit labels - L 1.2,3 •••••• ,i, ••••••••••• N
Characteristic values Yl' Y2' Y3' •••• Yi, •••••••••• YN
Wei gh ts 1I l' 1I 2' 1I 3' ••• , 1I i' lIN
The weight variables are defined as

{
o if the unit is not in the sample

lIi• ci~O if the unit is in the sample "-

The population total for a characteristic is:

where for brevity 1:is defined as the summation over N units; and,
yc!

N

The estimator of Y is: Y - 1:PiYi • 1:"'lliYi



The estinator of Y is:
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where I' is defined as sumnation over the n units in the sample since
~i - 0 for theAN-n units not selected.
The estimator Y has a distribution because the ~i have a distribution;
however, the ~i are not necessarily independent.
Theorec 1: A necessary and sufficient condition that EY - Y is that
E(~i) - 1 since

Y - EI~iYi - IE(~i)Yi - Il·Yi - Y

A EI '~iYi Y
Y-------N N

2.1.1 E~llal Probability of Selectio~ (EPS)
th 1The probability of selection for the i .unit on any draw is N .

For a s~p1e of n independent draws when n is fixed, then

~ -i

n N-no with probability 1 - N - ~

n n fCi with probability N - I N (Ci - constant C)
1-1

.. N-n nE(~ ) • O· --- + C· -1 N N
Cn

a-
N

If the estimator is to be unbiased, Theorem 1 must be satisfied, or
E(~i) - 1.

.. Cn--N
N1 or C - (Le., "expansion" or "ja'ck up" factor)n

An unbiased estimator of the total Y is:

ti is the number of times a unit is selected and ~ is the distinct units.
The mean is estimated by:

where it is clear that ~ ~ n in the above formulas.
2.1.2 Unequal Probability of Select~on (UEPS)

This implies some infornation (at least ordinal) is available in
t~e frame for each unit, besides the unit labels, ,.,hichis useful in
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assigninB probabilities to all units in the frame. While there may
be several different kinds of infornation available for each of the
N units, we shall require tha~.the information for each unit will be
reduced to a sinBle nUMber Xi for each of the N units. The probabil-
ities of selection Pi will depend on the Xi's and the selection procedure.

Notation
Universe of Distin~uishable Units

Unit labels - L
Characteristic value
Probability of selection
Weight
Number of times unit selected

1,2,3 •..•..•...... 1 I·····N
yl'y2'yc'·········yi'····yN
P1'P2'P3'·········Pi'····PN
lJ 1,lJ 2 ,1J 3'· •••••• • .1J i ,.•••1JN
tl ,t2,t), •••••• '••• ti ,•••• tN

Total
'y

1

n

The weight variables are defined as

{
o with probability l-nPi

lJi • citi>O with probability nPi

where Pi a the probability of selecting the ith unit

n~ t t tand E(ti) • npi, and P(tl •••• tN)·, I Pll.P22 •••••• PNNt1······tN•

If the estimator is to be unbiased E(lJi) • 1

. nCiPi - 1 1 hence 1Ji
ti

• . or ci --- a --nPi nPi
An unbiased estimator of the total is:

,.
y a E IJ.liY i • Iy iE(J.Ii)

estimator of Y is:
1 ..tiYi-I--
n Pi

N

The

,. y
Y • '- •

N
1.-nN

1- -n
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Two methods of selection which may be employed are:
(a) The Hansen-Hund tz Hethod - All N vcllues of Xi known before selection

(1) Form cumulative sums ~1 of the Xi where
S1 - S1_1 + Xi' ial.2, •••••N and So - o.

(2) Draw a random number R between 0 and SN
th(3) Select the i unit if Si-l < R ~ S1'

(4) Repeat (2) and (3) until all n units are selected.
(b) The Lahiri Uethod - knowledge of Xi required only for selected units

(1) Select t\-lOrandom numbers: one from 1 to N, called Rl' which
identifies a particuiar unit, and the other from 0 to X*, called
R2, where X* is the maximum value possible for any of the Xi (or
use a larger value).

(2) For the cnit corresponding to Rl determine if R2 ~ Xi' if so
thselect the i unit; otherwise repeat (1) until a selection is

made, then
(3) Repeat steps (1) and (2) until n selections have been made in

step (2). Xi
both schemes Pi - -- whereSNFor s -N

N
~ Xi' and N is known.

i-I
2.2 Sa!tlplin~Without Replacement - Unordered Samples (Hethod 1)

Notation - same as introduced 1n 2.1
2.2.1 Equal probability of selection (EPS)
The total number of possible samples of size n is (N). The total nunrner

n
of size n which contain a particular unit, i.e., the

The total number of possible samples of size n which
N-2pair of units, i and j, is (n-2). The probability

of possible samples
th l-l-li unit, is ( 1).n-

contain a particular
of selecting the ith unit is:

P -
(N-1)
n-l---~)

n
N

The weight variables are defined as

{
0 with probability 1 - :

11 • ni Ci with probability N (Ci - constant C)
• N-n n Cn

•• E(ll i) ••o. N + C. N - N

For unbiasedness ~n - I, ••• C - :
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An unbiased estimator of.the total is

N
N t'"Y - Et ~iYi - 1:Yi E(~i) - "n Yii-I

and the mean is estimated by

~ Y 1
Y - - - - t "'yN n i

Both of these results are the same as we obtained in Section 2.1 for
EPS samples.

Systematic sa~pling using EPS~~OR technique which is convenient in
practice because of its simplicity in execution. The technique consists

thin selecting every K unit starting with the unit corresponding to a
random number R from 1 to K where K is taken as the integer nearest to
N/n which is referred to as the sampling interval. A s~rnp1e selected
by this procedure is termed a systematic sample with a random start.
It may be seen by an inspection of the possible units in the sample that
the selection of R determines the whole sample. This procedure amounts
to selecting one of the K possible ~roups of units (i.e., clusters) into
whi~h tho universe can be divided.

In addition to the convenience in practice, the procedure provides
more efficient estimators than simple random sampling under many condi-
tions. Namely, each group of K units may be thought of as being ordered
to achieve homogeneity over the universe. That is, the universe is
effectively stratified into K strata with one unit being selected from
each stratum.

In many universes the units are found already arrayed in strata
based on the proximity of the units in their natural ordering. A geo-
graphic ordering of the units frequently provide a natural stratification
which may lead" to a more efficient estimator than simple random sampling.
Likewise, systematic sampling over a time interval may prove more effi-
cient than ~i~ple random sampling over time.

The estimator for systematic sampling is the same as given above,
namely
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However, the selection of only one cluster of K units based on a sin8le
random start does not pemit an unbiased estimate of the variance. To
overcome this difficulty, m sY6tematic samples of size N/nm are selected
using m random starts and K E N/nm. The mean is than a simple average
of the m sanple means for each of the systematic samples of size K. The
use of m systematic sample is referred to as replicated or interpenetrat-
ing sub-samples.
2.2.2 Unequal Probability of Selection (VEPS)

This case is very difficult to handle because of the calculation
thof the probability Pi and the jPint probability (Pij) of the i and

thj units which vary depending on the order in which the units are
selected. We shall look at several types of selection procedures which
make the calculation of Pi and Pij manageable.

Notation - same as introduced in 2.1.2
We consider methods that use the Horvitz-Thonpson estimator (HT) which
is the only unbiased estimator. Let pes) denote the probability of
selection of a fixed number of n units without replacement, and S denote

Nthe set of all ( ) possible saMples of size n.n
thWi • probability that i unit is in the sample
th thwij • probability the i and j units are both in the sample

Then wi· t pes) ,
s3i

t PCs)
s3i,j

where the sum
unit, and the

thWi is taken over all samples of size n containing the i
~ ~sum w1j is over all saMples containing the i and j units.

N
I W • n ,1=1 1

~d
N
rr wij - n(n-l)

i~j

Theorem 2: A set of necessary and sufficient conditions for the esti-
N

mability of any linear function r~iYi is Wi > 0 if ~i ~ o.
N

Consider the estimator y. r aiciYi where a's are random variables
i-I

defined as
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1 if the ith unit is in the sample

o otherwise

£(a1) - O(1-w1) + l.wi - wi ' E(aiaj) - wij
For the estimator to be unbiased

or hence \1i

..

.•.YHT 1
y-----N N

I# Yi
lI'i

which is the Horvitz-Thompson estimator of the total.
The mean is estimated by

Y
I # ...!.

1I'i

If the selection procedure is such that wi is proportional to Yi, the
estimator reduces to a constant, and thus has zero variance. In rractice
we search for measures of size Xi proportional to Yi and try to have a
selection procedure based on the Xi such that wi is proportional to Xi
since Y, is unknown.

We now consider some sampling methods for which the sample estimate
.•.

of V(YHT) is non-negative. In addition, we would like to impose certain

other minimum requirements:
(a) Wi proportional to Xi' where Xi was proportional to Yi(wi-nPi·)·

This is necessary for sampling efficiency •
.•.

(b) V(YHT) is always smaller than the variance in with replacement
sampling (section 2.1.2).

(e) wij ~ Wi wj for all i~j. This is the condition necessary for non-

negativity of variance estimator.
(d) wij> 0 for all i~j. Condition for estimabi1ity.

(e) Computations relatively simple.
Methods for n - 2
(a) Brewer method - The procedure is based on construction of 'revised'

sizes Xi which make

Wi - 2Pi. (Wi - nPi)
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(1) Select the firs~ unit with probability proportional to the
revised sizes xi

(2) Select the second unit.with probabilities proportional to the
original probabilities Pi of the remaining units.

Durbin has obtained the same result for n • 2, but the method extends
for sample sizes greater than 2.
Durbin procedure for n - 2t the first unit is 4rawn with probability Pi'
and the second unit from the remainder of the population

Xi
Pi - X
Pj•i • probe (selection of j/i already selected)

_ P (1 + 1 ) ~(l + ~ Pi )
j l-2Pi l-2PiJl i_11-2Pi

and wi • 2Pi (n times probability of i unit)
!lP\1

wij - 2PiPj•i - ~PjPi.j (n times compound probability of i + j)

Xi
N
IXi

Xj(2) Draw the second unit with probability -N-·-----
IXi-Xj

However, the ordering effect on Pi is removed by considering all orderings.
The estimated total for the Hurthy estimator for n • 2 is:

(b) l-1urthy'sMethod
(1) Draw the first unit with probability

where PI • probability
P2 - probability

Method for Any Size n

Y • 1 [Yl(1_P) + Y2(1-p;1 based on the ordered estimator
2-Pl-P2 PI 2 P2 I~

in 2.3.1
that ith unit is drawn first
that jth unit is dr~1n first.

(a) Rao, Hartley, Cochran ~fethod (RHC)
(1) Split the population at random into n groups of sizes NIt N2, •••Nn

where NI + N2 + ..• + Nn • N.
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(2) Dr~1 a sample of size one with prohabilities proportional to
size from eac~ of these n groups independently.

(3) And N ~ nR+K, Ni • R or Ni • R+I, O~K<n
The unbiased estimator of the total is

thwhere Pt • probability of selecting a unit from the t group
(the probability of selecting the group), that is

th th• probability of selecting the i unit from the t
group (Pi • P(i/t»

th thThe probability of selecting the i unit in the t group Pi • Pi/Pt

A disadvantage of this method is that there exists another estimator
which has uniformly smaller variance but this is generally considered
a.t~~orctical rather than a practical disadvantage since the other
estimator is very difficul~ to compute.

(b) Systematic Selection
A generalization can be made from systematic sampling with equal
probabilities. Cumulate the measures of sizes of the units and
assign them the range 1 to Xl' Xl + I to Xl + X2, Xl + X2 + I to
Xl + X2 + X3, and so on. In order to select a sample of size n,
a random number is taken between 1 and K = X/no The units in the
sample are those in whose range lie the random number i and all
other numhers i+K, i+2K, ••••••• , obtained by adding K successively
to i. If there is any unit whose measure of size ~X/n, it is
removed before the sample selection procedure begins and included
in the-sample with certainty. The probability of the ith unit is
Xi/(X/n) • npi• No simple formula for nij can be written down.
For a specific arran~ement of units, this can be calculated by
finding out \vhich random numhers (from 1 to X/n will selected the
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thand j units. If mij is the number of such random numbers,
c nmij/x. If N is not too large, this is certainly feasible.

Thus, unless 7Tij can be computed, the variance of the estinator
cannot be derived.

To insure that exactly n units, and not (n-·1)or (n+l) , are
selected. circular systematic selection can be used. That is. a
random number R between 1 and X is selected and multiples of K are
added and subtracted from R to determine the n units to be included
in the sample. An unbiasea estimator of the population total is
given by:

y •

(c) Murthy's Estimator
This unordered estimator is obtained by weighting all the possible
"ordered estimators" (given in 2.3.1) derived by considering all
possible orders of selection of the given srtmplcswith their
respective probabilities. The estimator can be shown to be of
the form

1
y c peS)

thwhere peS) is the probability of getting the S unordered sample
I thand peS i) is the conditional probability of getting the S sample

thgiven the i unit was selected on the first draw.

2.3 Sampling Without Replacement - Ordered SaMples (UEPS)
For unequal probability of selection schemes, ordered estimators

have been used because of the ease in calculating the conditional
probabilities based on the order of selection. We consider only a few
schemes.
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2.3.1 Des Raj Estimator

(A) Case for n - 2
For the first unit drawn we have the estimate

N Y1
EY - 1:lJ Y •• 1:'" (-)i i P1

After the second unit is drawn, we estinate

Considering both estimates

1 Y1 Y2
- - [(l+P ) - + (l-P ) -]'2 1 P1 1 P2

(B) Case for any n

Define ~, as above and

(1-P1-P2-···Pi-1)
Pi

1y--
n

where Pi - P(1Ii-1, i-2, •••1)

Since a sample of size n can be ordered in n! ways, an unordered
sample estimate can be derived by considering all n! estimates and
averaging them. Murthy's estimator corresponds to the average of
all the ordered estimates for the n units selected.

2.3.2 tUdzuno System of Sampling

The first unit is selected with unequal probabilities, and for all
subsequent draws the units are selected with equal probabilities and with-
out replacement. The estimator for this scheme is the Horvitz-Thompson
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Estimator. The initial probability of selection Pi must satisfy the
condition (i.e., a minimum value)

n-l
Pi> n(N-l) •

The probability of the largest unit is maximized when the other units have
eyual probability of inclusion. This probability barely satisfies the
minireum size condition.

N-l
pel - 1:P'
i iel i

P'> _n_-_l__
i n(N-l)

where Pi for the other N-l units must satisfy

Hence
N-l N-l n-l n-lL P' > L c if all probabilities are equal.
i-1 i iElln(N-l) n

Thus PL must be smaller than 1 - n-1 1-- - • orn n

n - 2 5 n

P -
1 1 1

L 2 5 n

P - 1 4 n-l
i 2(N-l) 5(N-l) n(N-I)

Theorem 3: For every ordered estimator there exists an unordered estimator
vhich has smaller variance.

2.4 Sampling \11th Repl acement - (Nethod 2)
We start with an estimator of the mean and obtain its expected value

by treating Yi as the random variable. The estinator is unbiased if the
expected value corresponds to the mean value for the parameter in the
population.
t-:otation:

Universe of Distinguishable Units
Uni t labels - L
Ch3racteristic value

1,2,3, ••• , i, ..... , N



2-13

2.4.1 Equal Probability.of Selection (EPS)
, n
1Consider the estimator y ••- °t y

n n i-I i

1 n 1E(yn) ••E(; Ey
i
) ••; { i(Yi)+ •••+E(y;)+ •••+E(y~> }

thyhere y' corresponds to the unit selected on the r dray. For yith re-
r thplacenent sampling. the probability of selection on the r draw, Pir,

1for a unit is N

E(y"') ••
r

Y -- --N Y
Substituting this results above

E(y> ••! {Y + Y + ••• + Y }n n
nY

co -
n

••Y n ••terms in sum

2.4.2 Unequal Probability of Selection (UEPS)

Consider the estimator

N
where EPi - 1.

Let i!i for brevity

y
•• - •• Y

N

nY
•• - - Y

n

2.5 Sampling Without Replacement - Unordered Samples (Method 2)
Notation:

Universe of Distinguishable Units
Unit labels - L 1,2,3, •••• i ••••••• N

Characteristic value

2.5.1 Equal

Consider the

E(y > ••n

Yl' Y2' y3,. ••·yi······yN
Probabil~_~~_Se~ec~ion (EPS)

_ 1 n
estimator y ••- EYi

n n

1 n 1E(n EYi> ••; { E(Yi> + ••• + E(y;> + ••• + E(y~> }
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thwhere yl corresponds to the unit selected on the r draw. For without
r threplacement sampling, the probability of the selection on the r draw

N-1P -ir N
N-2
N-l

N-r+l 1
N-r-L2 • N-r+l

1- -N
'"'! - YN

Substituting this results above
E(y ) _! {y + y + .••• + y} _ nY _ Y

n n n
2.5.2 Unequal probability of selection (UEPS)

Each of the methods of selection may indicate a different estimator
(see section 2.2.2) for the mean.

2.6 Sampling for Qualitative Characteristics
We consider only sampling without replacement for equal probability

of selection schemes since it will be shown later that WOR sampling is
more efficient than WR sampling. l-le shall. not consider in detail UEPS
schemes since the units either assume a value of 0 or 1 as a measure of
size. Consequently, it is unlikely that UEPS schemes would be considered
except in those situations where quantitive data was also being collected
for the same sampling units.
Notation

Universe of Distinguishable Units
Unit labels - L
Attribute value

Weights

1,2, •.•.•• i, ..... , N

a1, a2, ••••• , a1,·····, ~

1Jl' 1J 2' •••••, 1Ji' ..•.• , \.IN

The weights are defined as before while a1 is equal to either 1 or 0
depending on whether the unit has the attribute or not.
2.6.1 Two classes - EPS

The sampling units in the universe are divided into two mutually
exclusive classes. Let p and q denote the proportion of sampling units
in the population belonging to Class 1 and Class 2. respectively. In a
sample of n selected out of N, nl units will occur in Class 1 and n2 in
Class 2. The pro~ability P(nl) is given by

I,
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(~i) (~j)
( :)

The variate n1 or the proportion n1/n is said to be distributed in a
hypergeometric distribution. As N tends to be large, the distribution
approaches the binomial.
An unbiased estimator of the total population size is

N
•• """"1'l

n 1

based on the results in section 2.2.1, and the proportion P is estimated
by considering

n: W-n) !N:

(n-l):(N-n):
(N-l') :

where the suwoation represents the probability

that in a sample of n-l, nl-l will fall in Class 1 and n2 will fall in Class
2. The sum over all values of n1• is 1•

•·.E(n1) - np
Consequently, the proportion p is estimated by

n1
- - • andn

•.
E(q) n

2.6.2 For K classes - EPS
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The total population size for the i class is:

NNi • Ii ni .

2.6.3 For K Classes - UEPS
We briefly consider sampling without replacement and unequal prob-

ability of selection based some measure of size related to a quantitive
variable which was observed for the same set of n sample units and used
a the basis for selecting the units. That is. as part of a multiple
characteristic or multipurpose ·survey. He consider only the RHC method
of sample selection. For the total number of units

n
i

P
L -.!.

Pi
thand for the proportion of units in the i category.

cate this fraction to avoid confusion with the use of
th thability of selecting the i unit in the t group.

We use fi to indi-
Pi for the prob-

I ni Pt
- I: -N Pi

2.7 Sampling for Quantitative and Qualitative Characteristics in Subpopulations
This sampling problem is cuneerned with subpopulations and is conmonly

known under the title of "Domain Theory." lve are concerned with estimat-
ing the total of a quantitative characteristic for each of K subclasses
in a population where the subpopulation sizes are unknown.

Notation - Same as given in 2.6 except the quantitive variable Yi is also
defined for each unit in the universe of N.

2.7.1 Sanpling With E~ual Probabilities (EPS)
We define the quantitiltive characteristic for "domain theory"

if the ith unit belonr,s to the jth class

otherwise
jn • number of Yi in the jth class

thThe estimated total for the j class is
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since the sanple is cho~en by sinple random sampling fron the entire
population, the s~bsample jn ~an also be considered a random sample
froD Nfj, hence jY is unbiased "for a given jn.

2.8 lnverse Sampling - (EPS)
If the proportion p of units in a given class is very small, the

method of estimation given previously rr~ybe unsatisfactory. In this
method the sample &ze n is not fixed in advance. Instead, sampling
is continued until a predeternined nu~~er of units, m, possessing the
rare attribute have been drawn. To estinate the proportion p, the
samplinr, units are drawn one by one with equal ?robability and without
"replacement. S~plinr, is discontinued as soon as the number of units
possessing the rare attribute is equal to the predetermined number m.

pen) - {
In a sample of n-l units } { The

P drawn fron N, m-l units .P nth
will possess the attribute the

unit drawn at the]
draw will possess
attribute

Since the possible values of n are: m, m+l, ••• , m+Nq, we have

t P(n) - 1.

An unbiased estimate of P is given by

m-lP - --- and Np • PN.n-1
2.9 Linear Estimators and Optimality Properties

A thorough examination of linear estimatQrs has been underway since
the Horvitz-Thonpson paper on sampling without replacement in 1952.
Seven or eight subclasses have been proposed, three subclasses will be
considered "below.

n
(1) T1 • 1:o.rY r

r=l

where a (r=1,2, •••n) is the coefficient to be attached to the ~nit ap-
r thpea ring in the sample at the r draw (no attention is paid to the unit
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label ~i.) and is defined prior to sampling.

vhere 6i is the coefficient to be attached to the unit with the label
~i whenever it is in the sarT1ple,1.e., i - 1,2, •••N. and is defined in
advance of sampling.

where y is a constant to be used as a weight when the sample s iss nn
selected and the weights y is defined in advance for all s .s nn
When EPS is used. the sample I;1can

n
L Yi

i-I

is the best linear unbiased estinator (BLUE) in the class Tl. The
proof rest on an extension of }tarkoff's Theorem. The sample mean y
is the only unbiased linear estimator in the subclass T2' and corresponds
to the methods of weight variables. It is known that there is no BLUE
in the subclass T3. However, a BLUE may not exist in a broad class of
unbiased linear estimators for any sampling design.
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Chapter III. Multistage Sampling

3.0 Introduction
In single stage sampling procedures the unit selected was com-

pletely enumerated or observed. These u~its could have been a cluster
of people livin8 in the sane household, a section of land, a city block,
a fruit tree, an individual student, or a classroom. It is frequently
necessary for reasons of efficiency in sampling or cost to consider
multistage sa~ling in which only a part of a cluster of units is
enumerated. The selection of only a part of the cluster leads to the
use of multistaee or subsanpling designs. The number of units within
a cluster may be thought of as a measure of size. Since the y values
are fixed under the method of weight variables, only the distribution
of the ~i will be affected. A design is characterized by its weight
variables.

3.1 Two Stage Sampling
3.1.1 Equal Probability Without Replacenent at Both Sta~es
Notation:

Prioary number
Secondary Units in Primary
Pri~ary Weight Variables
Primary Total
Primary Mean

Characteristic Nalue

Weight variables

Pop~lation of primary units
1,2, ,i N
Ml ,M2 ' ••••• ,foli ,•••••~

\11,\1 2 ' ••••• ,~ i ,•..••\1N
Y1 ,. Y2' •••.•• ,Y i ,.••..YN
Yl, Y2,·····'yi'·· .. .,yN

thSecondary units for i primary

Total

a with probability 1

Stage 1: Select n primaries out of N (EPS, WaR)
Stage 2: Select mt secondaries out of Mi (EPS, WaR)
Weip,ht coefficients

{
0 with probability 1 - :

\1i • nCi with probability N

rot
Hi

miCit with probability ~
i
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~lere Vit is correlated with Vit" but not with the wei~ht in another
primary, say Vjt,

Since Ci : a 1 for un~ia8edness Ci
N- -n

The estimator of the population total is

N Mi N , Mi N n
Y E 1: 1: II Vi Y •••-n 1: ro

i
.Yi, ••-n 1: MiYi,- i t it

i t

where Yi• is the total of t"he roi secondary units. Then

In selecting pri~ary units with probabilities proportional to size,
selection with replacement is used for simplicity. In some surveys
the number of primary units in a strata or population is rather small,
In such situations, it is desirable to select units without replacement
to produce the reduction in variance associated with a finite popu-
lation correction factor. However, these zains affect mostly the
bet\"een pri~ary unit contribution of the variance, and to a lessor
extent the within primary unit variances. Consequently, the gnins in
~ultistage sa~pling will be smaller. This is especially true when
the pri~ary sampling fraction is large and the within primary sampling
fractions are small so the major part of the total variance is due to
the second or lower stage units. The calculation of ni and nij for
pri~ary units is more manageable if N is not too large.
Rule 1: The unbiased estimator of Y in Multi-stage sampling is obtained
by replacing Y

i
by Yi in the corresponding unbiased estimator uf Y in

I
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single-stage sampling o~ clusters (i.e. primaries) \lhen the clusters
are co~lete1y enumerated.
3.1.2 Primaries Sampled With Unequal Probability With Replacement

Secondaries with equal probabilities without replacement, but
the same mi secondary units are used each time a primary is
selected. The weight variables are:

lJ _ {o with probability I - nPt
t citi with probability nPi

where tt· the number of times a primary is selected (multinomial variate)
thPi - the probability of the i primary being drawn

• 1

and E(Vit) - I from previous section

The use of the same mi units each time a primary is selected will alter
the variance formula as compared to a sampling scheme selecting a
different set of mt units each time a primary is selected •

..
y .•

where HO ••

I---nMO

total number of secondaries in population.

3.1.3 Primaries and Secondaries Samo1ed Without Replacement
Stage 1: Select n primaries out of N (PPS, WOR)
Stage 2: Select mi secondaries out of Hi (EPS, WOR)
Weight coefficients (From section 2.2.2)

{
0 with probability l-nPt

lIi -.
citi>O with probability nP1

E (t i tj) •• 1fij

1hence ci n for unbiasedness
nPi
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mi

{
o with probability 1 - M

• m i. 1cit with probability ~
i

Hi
- 1 hence cit • -- for unbiasednessmi

1.-
n

•.
y •

Notation: Y1th is the observation in
and hth tertiary.

Wei£ht cpefficients:

n primaries are selected from N
mi secondaries are selected from Hi for a primary
kit tertiaries are selected from Kit for a secondary

th ththe i primary, t secondary,

3.2 Three Stage Sampling
3.2.1 Equal Probabil~ty Without Replacement at All Stages
Stage 1:
Stage 2:
Stage 3:

lI

i
_{O with probability 1n- ~

ci with probability N

E(lIi) • O·(l-i>
N

• • ci • n
+ c n. 1 for unbiasedness

i N

mi
{

0 with probabili ty 1 - M
• mi i

cit with probability Mi
i

• 1 for unbiasednes8
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kito with probability 1- ~
it

With • kit
cith with probability ~

it

kit kitE(W ). O· (1- ---) + C --- • 1 for unbiasednessith Kit ith Kit
Kit

• • With • kit

3.3 Use of Conditional Expectation
In the previous sections, we have relied largely on the weighted

variable technique to derive unbiased e~timators. The weighted
variable technique is extremely useful since it provides us with a
positive method of finding unbiased estimators for any design. How-
ev~, a ~ample estimator for a parameter is frequently proposed based
on certain heuristic considerations and its expectation needs to be
evaluated. It is proposed to examine several alternative estimators
for parameters previously derived to develop an appreciation for the
usefulness of the conditional expectation technique in multistage
designs. There are many situations in which the two methods are
combined in deriving an estimator for a parameter.

The total expectations are always taken starting with the last
stage of selection, and proceeding to the next higher level. • The
effect of the conditioning event (t.e., the selection of a particular
unit at a given stage) is to permit us to treat the units selected as
subpopulations (strata) when taking expectations over the stages below
a given stage.
3.3.1. Two Stage Samplin~ (3.1.1 for Method 1)
We consider an alternative estimator of the mean which is based on the
average of the primary means in the sample.
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That is:

random event i.

where we now treat the ith primary as a "subpopulation" by taking the
conditional expectation of the random variable Yit conditioned by the

1 m1Using EPS within the primary, E(Yili)8E(m1t Y1tli).

l~ ~M t Y1t' the expectation over all Y1t in the 1 primary.
1

..•
... y -1

Now taking the expectation over all N primaries
... 1 N_Yl - N EY1 a YN which is the average primary mean in the population

of N primaries, but 1s a biased estimator for the population mean of the
N
nli • MO units.
Another estimator that could be cons1dered 1s:

which is based on the estimated totals for the primaries selected divided
by the number of secondary units in the n selected primary units. Both
the numerator and demonimator will vary from sanple to sample due to
different secondary units being chosen. We start by taking expectations
at the lowest level or stage in the design.

n n n
..• rt\E(Y i 11) 1:MiYi EY!
Y2 • E - E • E-n n n

EM! EMi tM!
which is now in the form of a ratio estimator. The numerator and demonina-

...
tor can both be divided by n so each will resemble the last estimator (VI).
The average primary total divided by the average primary size:



)-1

.: YnY2 - E{n-} which based on Chapter 1 gives
n

\1hich is biased unless all Mi are equal or

the covariance is zero.
3.3.2. Two Stage Sanpli~g (3.1.2 for Hethod 1)

We generalize section 3.1.2 with regard to the second stage of
sampling by specifying only that the sub-sampling scheme within a primary
provides an unbiased estimate of the primary total.
The estimator proposed for the population total was:

Now

which is an unbiased estimator of the population total.
3.3.3. Three Stage Samplin~~2.1 for Metho~

The bnsic techniquE is illustrated for three stages using the
estimator derived in 3.2.1.
The estimator for the population total was:

• N n Hi mi Kit kit
Y • - ! -- L --- L Yl.'thn. mi ki t

Y • E(! ~ Hi ~i Kit ~i t Y
ith

)
n mi kit
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nM 1ll K k
• E[l! "'....!. ",i~ ",it E ( lit)]k L '3 Yithn mi it

where

or
N n Mi mi

y • E[- ~ -- ~ E(Ki Yi li)Jn mi t t

A A

E(KitYit./i) • E2(Yit./i) ,. Yi ••• Where Yit is the sample total

for the tth secondary in the ith primary.

th1s the total for the 1 primary

N.-
n

where Y••• is the average primary total

y.NY •••• y.
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Chapter IV. Estimation of Variances

4.0 Introduction
The estimation of variances 1s developed in terms of deriving the

expression for the population variance and then seekin~ an estimator
of the population variance based on the sample data. An estimator
of the population total or t:leanrequire kncr.tledgeof the probability
of selection for each unit in the population or the units in the
sample depending on class of estimators being considered. The esti-
mation of variances requires the kno\1ledge of joint probabilities of
each pair of units as well as the probabilities of the individual
units for estimability. The requirement is that both Pi and Pij be
8reater than zero for a finite population. Variances will be derived
for the class of estimators T1 and T2 introduced in Chapters 11 and
111.

Of particular importance in these derivations will be the use of
conditional expectations and probabilities, especially for multistage
sampling designs. The notation established in Chapters II and III
will be followed. It should be noted tnat we are concerned with the
variance of estimators and not the variance of the population charac-
teristic which was defined in Chapter 1, Section 1.5 (16).

How~ver, a definite relationship be~~een the variance of the
estimator of the population parnmeter and the variance Qf the
characteristic measured (or observed) in the sample does exist.

4.1 Single Stage Designs - Population Variances
4.1.1 Equal Probability of Selection lHth R~lacement
Notation from Section 2.1.1
a. For the subclass T2 of linear estimators,

N N v
y - t~iYi - n t'Yi • n ttiYi
Taking expected values in terms of distinct units ,and fixed sample
size n; t1 is distributed as a binomial variable.

n.-
N
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1 1E(titj> • n(n-1)(-)(-)N N

V(t
i
) • n(N-l) + (~)2 _

N2 N

Using (19) of Chapter I, Section 1.5

N2n N 2 N 2 N N N 2.- r NEy i - 1:y - (Eyi)(Eyj) + EYiJ
n

2N2 i

N 2 N 2

N2n N 2 N 2 N2
1:yi- (ryi)

(1) r N ).- (NEY
i

- (ry ) J--
n2N2 i n N

b. For the subclass T1 of linear estimators

2 N2 2
• no - - 0

Y n Y

The variance of the estimator of the population total is related to 2
Nthe variance of an individual unit of the population by the factor -n

and it follows that the variance of the mean is related by the factor !.
n

4.1.2 Equal Probability of Selection Without Replacement
Notation from Section 2.2.1
a. From the subclass T2 ve hav~



since all units are distinct ti - 1, i.e. a constant.

N- -n
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(!)2 _ N(n-l)
n n(N-l)

N-n•.-
n

N(n-l) N-n
r~v(~i~j) ~ n(N-l) -1 ••- n(N-l)

where the total number of possible sa~ples of size n

(1) Are (N) , and
n

N-l(2) ~~ich contain a particular unit are (n-l)'

(3) ~~ich contain a particular pair of units are (~:~).



(2)

N 2 N 2
1:Yi-(rYi)

N
N-l )
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We conclude this section with a theorem on the estimability of any
quadratic function. This result is a conpanion to the t.leoremon the
estimability of a linear function - Theorem 2.

Since V(Y) is a quadratic function of y~, we state the necessary ands
sufficient conditions for the estinability of any quadratic function,
NN
Ir~ijYiYj ; i.e., estimability implies unbiasedness.
ij

Theorem 3: A set of necessary and sufficient conditions for the

'lj>O if "lj ~ 0 }

'lri>O if ~ii ;.0

is:

where i;'jand ranges all N units.

Coroll~: The variance of an unbiased estinator of Y is not estimable
unless uij>O for all i and j in the population.

These conditions have been satisfied for equal probability sampling
and for unequal probability sampling with replacement, but are
critical assumptions in unequal probability sampling without replace-
ment. We shall show the consequencies of this in the next section.
4.1.3 Unequal Probability of Selection With Replacenent

A 1 ti
Y • L~ Y • - I ~ - vi i n Pi-I

where the tits indicate the number of times

a unit is selected and follows the multinomial distribution.

E(~i) • 1

2 (I-Pi)
E(~i) •• --- + 1nPi



V (ll i)
l-p

i---nPi
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1.. - -
1)

Using (19) of Chapter I, Section 1.5

(3) 1 Yi 2
- - rp (-)

n i Pi
1 2
n (ry i)

2
1 Yi 2 0y•• - rp (- - Y) •• -
n i Pi n

2Note that the subscript on a is a capital Y to indicate the variance
of the total of the characteristic ~hile a sMall y was used in the
previo~~ section, i.e., Y • NY.
4.1.4 Unequal Probability of Selection Without Replacement
Notation from Section 2.2.2

• YiY ••tE(ai)ciYi ••t' wi is the HT estimator where at •• 0 or 1

depending on whether the tth unit is included in the sample or not.
The variance of Y is given by

2• YiV(Y) ••t ~ V(at)
wi
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(4)
..

V(Y) • 1: + I 1:
1 j;1

which is the HT expression for the variance.
An alternate expression is derived from writing V(ai) and

Cov(a18j) as two terms
2 2

(4' ) V(Y) Y2 2 Yl 2 1: Y1 :J.
• 1: -2- E(a1) - r 2 [E(a1)] + 1: - E(a a )

1I
i

1I
i 1 j;i'Tfl'Tfj i j

where the second and fourth terms cOr.lbineand equal Y thE!population
total. That 1s

(41.') V (Y) •

2
Y

I_l_+1:
2

11'1 1

Next, we examine several sampling schemes considered 1n 2.2 and 2.3.
The Rao, Hartley, Cochran estimator 1n 2.2.2

V(YRHC) • ElV2(Y) + VIE2{Y) where the variance is conditioned by the
random split •..

Y P
., r'E V (-.!....!)

1 2 Pi
N.,rir
t<t'

Since YRnc is conditional unbiased, i.e., E2(Y)
..

hence V(Y~IC) • ElV2(Y) since VlE2{Y) • o.
y P

Now V(YRHC) • EIV2(Y) • EII'VZ( ~/)

y P Ni Pt Yi",here V (--L..!.) • 1: - (2 Pt P P IPi t i

• constan't
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N Yt Yt", 2
- t t attat'i? p '"(---)t<t'" t t Pt Pt'"

{ 0 if the th unit is not in group it
where ati - 1 if the tth unit is in group i

t and t'"are two units from the sane group.

Therefore
Ni G~i -1)

:HN-l)

(5)

(6) or

n
tN2 - Ni
N(lJ-l)

where V(Y) is the with replace~ent variance in 4.1.3.

We conclude this section with an intuitive proof of the Corollary to
Theorem 3.
Consider any unbiased estimator of the population total for n>l (so
we have a sum). the population variance may be written in the ~eneral
form

VeT ) -s

If nij • O.for some i and j. there is no samnle containin~ ~i and ~j
2so that tT pes) cannot contain YiYj' Therefore the coefficient of YiYj

in the Horvitz-Thompson estim:ltor will be equal to -2.
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Hence, from Theorem 3, VeT ) is not estimable; thus the need for thes
5 conditions stated on page 6 of Chapt~r II.

4.2 Multistage Designs - Population Variances
4.2.1 TWo Stage Design - EPS and WOR at both sta~es
Stage 1: Select n primaries out of N with EPS and WOR
Stage 2: Select mi secondaries out of Hi with EPS and WOR

rewriting

.. ..
+ 2 r t Cov(PiUi,lJjUj)

i<j

- I: Pi I: Vit (Yit-Yi) + I: PiYii t i

- I: Pi Ui + I: PiYi

- W + B
Now

(Yi-V)2N2 N
1 NV(B) n where Y.- (1 - -) r .- IYin N i-I N-l N

And

Ui - ~ VitYit - Yi
N ••

V(W) • t V(lJiUi)

2 ..
• tE(lJi) V(Ui)

2
N Mi

- - I-n mt

till. ". A",.
2t Cov(P1UlJ1,u1) • 2I: E(PiU1P1,U

t
)

1<1 i<1
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Now Cov(WB) a E(WB) since E(W) - 0
A

- 1:E(lJiUilJi,Yi)
i-i

...
- 1:YiE(PilJi)E(Ui) •••0
i-i

(7) V(Y)

If all Hi •••M

... NM
Y - - 1:"yn i

and the "large" between primary component reduces to
2 (Y _y)2

V(B) •••!! (1 _ E.)M2 1:_i__
n N N-1

Since it is rarely possible to achieve primaries of equal size, it is
desirable to reduce this be~een primary cOMponent when the Hi vary
considerably by either (1) changing the design, or (2) changing the
estlmat~ to one using auxiliary infornation.
4.2.2 Two Stage Designs - Vary Selection b~ StaRes
Stage 1: Primaries sampled with UEPS and WR
Stage 2:' Secondaries sMlpled with EPS and WOR
Scheme A: From 3.1.2 of Chapter III - The same mi secondary units are
used each tim~ a primary is selected.

t
Y 1:1: V 1 " .. it'" V- lIi it Yit •••- ~ P- itYitit n i i t

1 ..•ti ---1: -My
n Pi i i

As in 4.2.1,
...
Y •••1:lJiUi+ t1JiYi - W + B

i i
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1 Yi 2V(B) • - t P (-- --Y) by section 4.1.3
n i i Pi

2V(W) - t E(~i) V(Ui) as 1n 4.2.1
i

q
• t (l + -..:!. )

i nPi
since 2 2

2 npiqi n Pi
1

qi
E(~ ) - 2 +--- +-i 2 2 nPi(npi) n Pi

and as 4.2.1 Cov (WE) • 0

(8) V(Y) - tel + qi )
i nPi

In this scheme, there is variance due to
1. y variation
2. variation in primary sizes
3. allocation of different probabilities

ThQse l~st two sources of variation will cancel by choosing appropriate
probabili ties.

Hi Y1-Choose Pi • -M ' then -- - MY and the primary component becomes
P 1 i

tpi (Y i - Y> 2 \lhich does not vary wi th varying primary size.

Scheme B: The subsampling is done independently each time a primary
is selected in the sample, and the subsa."1lplingpermi ts unbiased
estimates of the primary total. The estimator of the population total
is b~sed on all primaries whether distinct or not.
Let El and VI denote the expectation and variance over sc~ples at the
first stage.
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Now
1 N Yi 2•. n Y1VlE2(Y) • v t - • -. I:P (- - Y)1 np! niP 1

from single stage theory. Also
•.

V 2(Y) •
n V2(Yi)
I: 2 2

n Pi
Therefore

independent sample of mi second-stage units is selected
thwithout replacement each time the i primary is selected in the sample

after replacing the whole subsample (i.e., a secondary may be selected
more th~n once).

primary is selected in the
h i f Y f the itht e est mator 0 1 or

n V(Yi) N tiV(Yi)ElV2(Y) - E1 I: 2 2 • E1 I 2 2
n Pi n Pi

number of times the ithwhere ti is the
sample and V(Yi) is the variance of
pdrnary total.

Now if an

N V(Y
i
)

- I: ---.nPi

which differs from (8) by the factor
2

qi Hi (1 _ mi)S2
nPi mi Hi i

When the probabilities are chosen as indicated on the top of page 15
and Scheme B used, a self-weighting sample is obtained.

and



V(Y) -
M2

o
2n(n-1)m

4-12

A A

where Y - (Y1+•••+Yn) t n

thand Yi - the sample total in the selected primary on the r draw.

In comparing schemes A and B. it should be noted that in scheme B the
number of secondaries actually selected is a random variable which in
scheme A the number of secondaries is fixed for a pnrticular primary.
Therefore. in scheme A, the optioum allocations can be found by equating
the actual fixed subsample sizes to the optinum valuEs while in scheme B
only expected subsample sizes can be equated to the opttmum values.
4.2.3 Three Stage Sarnplins

Notation from section 3.2.1
Stage 1: n primaries selected with EPS-WOR from N
Stage 2: mi secondaries selected with EPS-WOR from Hi

Stage 3: kit tertiaries selected with EPS-WOR from Kit

Ny--
n

To obtain the variance of Y, write

y - t ~i t Vit With y ith - Y + t lIiYii th i i
(

v
\

A- tlIiUi + t lIiYii i

- W + B where BUi - 0

and lIi and Ui are independent.

V(B) = 1where Y '"N EYi

Cov(WB) - 0 as before.
'/,
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2 AyeW) • tE(~i) V(Ui) and using the results in 4.2.1
i

Note: The pattern of the term for each stage is "expanded" by all
the stages above.

2
A N Hi Kit ki 2

V(Y) • - t - t - (1 - ~) s +n i mi t kit Kit it

where Yi •• ! t Yit•1\ t

Y.!tYN i i'

(Average secondary total)

(Average primary total)

(within secondary)

4.3 Conditional Expectation in Multistage Designs
The general formula

A A A

V(Y) • ElV2(Y) + VlE2(Y)

can be extended to additional stages by using the same identity to
A

express V2(Y) as

A A A

V2(Y) • E2V3(Y) + V2E3(Y)

and using formula 15 of section 1.4 to express

Combining these two results, an expression for the variance in a three
stage design is obtained.

~ A A A

V(Y) • ElE2V3(Y) + ElV2E3(Y) + VlE2E3(Y)
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These same two identities can be used repeatedly to get the variance
for any number of stages by expressing the expectation and variance
operation of the last stage units in the same manner as going from a
tvo stage to a three stage design.

For a three stage design with equal size units at all stages. we
have
Stage 1:

Stage 2:
Stage 3:

A 1 nm_
E(Y) - E1E2E3 nm rrYij.

1 nm _
- E1E2 nm rrE3(Yij·)

taken over all third stage units in the n.m "strata" over the selected
primaries and secondaries

nm
- E1E2 ~ rI:Yij

1 n 1 m_
• E - r E ry1 n 2 in ij·

taken over all second stage units in the n selected primaries

taken over all primary units in the population
N1 - -

• - IY • YN i··

The variances is derived as follows:
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1 nm_
- V1(E2D; ttYij]

1 n _
- VI (it tE2Yij]

1 n_
- V1(it ni]

N111 - - 2- (- - -) - t (Y - Y)n N N-l i

....
Now work on E1[E2V3(Y) + V2E3(Y)] or first two terms at bottom of page

·13. Replace the term in the bracket by two stage results:
For two stages

which for three stages becomes

Adding this

..
V(Y) -

results to that for V1E2E3 on page 21
2

1 1 8b 1 1 1 2 1 1 1 2(- - -) - + -(- - -)8 + -(- - -)8n N MK nm tl w nmK HK ww
Or, in terms of variance components

where
82
1

If n a N we have stratified sampling and m • M we have cluster
sample of size n.



Let Y be an unbiased estinator of the population total based on
r ththe primary drawn at the r selection.
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4.4 General Fornulas For Designs \fucreUnbiased Esti~ators of Primary
Totals Are Available
4.4.1 Selecting Pri~arie:> Hith Replacement
Stage 1: ur:PS-\~R
Stage 2 and lower - Sampling is done independently each time the primary
is selected and perQits unbiased estimators of pri~ary tctals. All

thsecondaries are replaced after selection of units for the r primary
selection. Note: It is possible for a secondary (or tertiary) to get
selccted more than once if a primary is selected more than once.

The estimator of the total is based on all primaries whether
distinct or not, i.e., r a 1, 2, .••n.

Y is based on subsanpling atr
the second and subsequent stages and is such that

E2(Y ) - Y and V2 (Y ) = Vr r r r

where E2 and V2 denote conditional expectation and variance over the
second and subsequent stages. Let EI and Vl denote expectation and
variance over samples at the first stage.

An unbiased estimator of the population total is

.•. 1 Y
Y - - 1:' -!: \-lhereP is the probability of the primary selectedn P rr

th that the r draw and Yi is the i primary total.

n Y n Y
E Y = E1E2 1: -!: = E l 1: -!: - Yr.Pr I n Pr

using single stage results since Y is a constant. The variancer

Now
.•. n Y 1 N Yi 2

V1E2(Y) • VI 1: r = - L Pi (-- - Y)nPr n Pi
from single stage theory, and

.•.
V2(Y)
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the rth draw

"'here E(ti)
selected in
for the ith

th
D nPi and ti is the nunber of times the i primary is
the sample and Vi is the variance of the estimator Yi
prinary total. Hence

V(Y)

For a two stage design with unequal size primaries
H2

V • .i(l-
i mi

4.4.2 Selcctinr, PriMaries t1ithout_~E:placel!lent
The estimator and its unbiased variance estimator for a design

can be provided where the correspondinr. para~eter for the single stage
design are known. Rules can be written down by considering a very
general estiuator of Y given by Des Raj (1966). Durbin (1953) pro-
posed similar rules based on using the Horvitz-Thompson estimator.
The necessary requirements for writing down rules are:

th(1) An unbiased estimator Yi of the i primary total Yi based on
sampling at the second and subsequent stages is available, i.e.,
E2(Yi) - Yi·

(2) The primaries are subsarnp1ed independently in a known manner so
that E2(YiYj) - YjYj and V2(Yi) • Vi w~ere Vi is a co~stant. An
unbiased variance estimator or vi B v(Yi) of Vi - V2(Yi) based
on sampling at the second and subsequent staRes is available, i.e.,
E2vi • Vi' Since Vi has to be a constant, the designs in which

subsample sizes are random variables do not fit into this set up.
The estimator of the population total, Y, is:

where ais are
tion that ais
the number of

predetermined numbers for every sample s with the restric-
th• 0 whenever s does not contain the i primary, and v is

distinct prir,laricsin the sample.
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Rule 1: The unbiased estimator of Y in multistnge saMPling is obtained
by replacing Yi by Yi in the corresponding unbiased estimator of Y in
a sinele stage samplin~ of clusters when the clusters are completely
enumerated. Note YG is unbiased if and only if E(a1s) - 1 for every
i-l,2, ••• N.

The variance of YG

v 2 v
- E1[Eais Vi] + Vl[~aisYi]

N 2 v
- EE(ais) Vi + VI [EaisYi]

Therefore, knm"ing the variance in single stage sampling, we need only
2 v 2E(a1s) or E1[Eais Vi]' SOMetiwes it is convenient to evaluate the latter

quantity.
Yi ~2

2

V(Y
G

)
O'i

where the first term- E E (niwj-nij)(--- n ) + r is
i j;i ni j i 'TTi

the Yates-Grundy variance of the lIT estimator.
4.5 Estimation of Variances in Single Stage Sa~ple Surveys

The property of unbiased estinators of variances will be used in
all derivations. In the preceding sections of this chapter, we have
derived the population variances for certain scher:lesof sampling. For
these schemes of sampling, it is clear the variance exists and have the
desirable property of being aluClYsnon-negative. Our task is to find
unbiased sample estimators of the various parameters or expressions that
appear in the variance formulas.
That is of

2
0' in 4.1.1, or

y

S2 in '4.1.2, or
y

Wi' 'TTij, V(Y), and Y in 4.1.4.

We start by looking at one of the expressions for the population variance
and choose the parameter(s) to estimate since you may have a choice if



V(y) •

V(y) •

you look at different fcrn~ulation of the sane variance formula. For
example, the population variance has the general form

2YiI:"2
'lf
i

which was given in 4.1.4, but this roay be rewritten as:
2

Yi 21:"2 {E(ai)
'lf
i

which reduces to
2

A Yi 2 Yi :J. _ y2(10) V(y) co 1:2 E(ai) + 1: I: lT
j

E(aiaj)
'Iff f jri 'lTf

since 2Yf 2 y Y 2 • y2I:- [E(ai)] + I: I: i ~ E(ai)E(aj) co (I:yi)2 i jfi 1Ti'lfi
where
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E(ai) a 'lfi and E(a
j
) • n

j
•

Hence in (10), we need unbiased estimates for each of the three terms.
Before proceeding to develop sanple estimators of the variance, we

present two general quadratic functions of the y's ,·,hichwill be useful.
These forms are generalizations of the results given in Theorems 2 and
3 earlier.
(11) LI(S) a I:'cif(yi) a I:ticif(yi) where ti is a random variable defined

as 1 if the unit Ui is in the sample and O(zero) othe~~ise.
The cits are constants for each of the N units in the
population.

For the sample estimate of I:lIiCif(y
i
),we need to have I:'Cif(yi), or

we need to determine the coefficient of f(yi), i.e., 1TiCi, and then
divide by 1Tf.

Hence, ~e divide
estimator I:'Cif(yi).
interested in moments

this product by
Cor.nonly, f(yi)
of the vnriablc

'lTi to obtain Ci for our sample
is sorre po~er of Yi and we are

2Yi; i.e., fey!) • Yi •



and are estimated from the saMple
and f(yi) - Yi and f(yj) - Yj in
Cij;O and lTi>O if Cij - Ci ; o.

• tt tij Cij YiYj)
ij

2data by letting f(yi) - Yi in (11)
(12) 0 Hence, we mus t have ITij>0 if
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where tij is a randoc variable defined as 1 if both the i and j units
are in the sample and 0 otherwise. The Cij are constants assigned to
each pair of units in the population.

For the sample estim3te of r r IT Cij f(Yi)f(Yj), He need to have
i j;i ij

t' t' Cij f(yi)f(yj), or we need to dcte~ine the coefficient of
i j;i

f(yi)f(y
j
) which must equal lTijCijo Hence, we divide this product by

lTij to obtain Cij, and the sa~ple estimator.

The forms (11) and (12) are frequentl~ combined in obtaining the variance.
That is, the terms

2ttiCiYi + t r tij Cij YiYj, (i.e.,
i j;i

Consequently, we look at the sample
statistic derived as a "copy"
Theorem 4. E(s2} - 52 where
---- Y Y

52 1 ~(y-)2 2 1. ~'( -)2~ and s • --- ~ v-yY D N-l Yi- Y n-1 Ji

4.5.1 Sin~le Star,e - EPS-HOR (Section 4.1.2, also 4.1.1)
In formula (2) of section 4.1.2, the only parameter which

2estimated from the sample is S •
Y
of the population parameter.

mus t be

By definition
2 '( -) 2 - -(n-l)s • t Yi-Y which we rewrite so as to replace Y by Y

inside parenthesis.
-2 --2• t'(yi-Y) - n(y-Y) replacing the first term by the

weighted variable representation we get
_ ElJ (Y _y)2 _ ncY-y)2

i i
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Taking e'~pectations
E[(n-1)s2] _ ~ r(y _y)2 - nV(y)N i

n 2 n 2- N(~l-l)S - (1 - 'N) S -
an unbiased estimate of

or the sample 52 is
y

N2 2
e - (1 - ~) S is estimated by replacing the population

!l ~l Y
Therefore

parameter

..
v(Y)

V(Y)
S2 bY y

2_ N (l
n

2the sa~ple statistic s • ory

is also useful for the variance in 4.1.1
Nby the constant ~-l which is

4.5.2 Single Stage - UEPS - WR (Section 4.1.3)

For this method of sanpling. the sanp1e estimator of the variance is a
"copy" of the parameter obtained by replacing Y by y. The results above

2 2since a differs from S only. y y
uninportant for moderate size populations.

The estinator
~ .•tiYiY - ~ and variance

nPi

A 1 Yi 2 2 2
V(y) - - tp (- - Y) • N an i Pi n Y

Consider the sample quantity

2 2 ti Yi ..2
N s • ~ t"- (- - Y) which we rewrite as

Y n-l n PI

ti '11 2 .. 2
• ~ {t"- (- -Y) - (Y-Y) }

n-l n Pi

n-1 ,,2 2
-- ., 5 •n '1

• ~nPilll (Yi _ y)2 _ (y"_y)2----- upon replacing the first term by
n Pi

the weighted variable representation.

I.
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Taking expectations

E[~ N2s2] _ N202 - V(y) N2 2 1 N2 2 (.!!.-l)
• a (1- -) • an y y y n y n

The sample estimator is
..

. ! N2s2 1 t c'i _ 1)2v(Y) - - 1:"-.!.n Y n n-l Pi

In this case the sample estimator is not an exact "copy" of the popula-
tion variance, but differs from the form given at the beginning of this

tsection in that we have i in$tead of Pi.
n-l

There 1s an alternate form for the sample estimator of the variance where
the summation is over all different pairs in the sample:

..
v(Y)

and the second term

I
I{ (Wij_1Ti'lj)

~YiYj ) by
i j;i 1Ti'lj 1Tij

In addition, the sampling schene must

4.5.3 Single Stage - UEPS - WOR (Section 4.1.4)
If we use the HT expression for the variance (4), we must have a

means of calculating the ~o terms. The two general estimators, LI(S)
and L2(S), can be used to immediately obtain the sample estimators.
The firs t term

2wi (l-1Ti)YiI 2 is estimated by
'Ii

1:" 1:" (1Tij-1Ti1Tj)YiYj
i j;i 1Ti'lrj 1Tij

be such that 1Tij~O for all pairs

in the population if the estimator is to be unbiased.
wi and 'lrij are subject to the following relations

N N N
IE(ai' • 1:'lri• n, and 1:E(ai8j) - (n-l)E(ai) - (n-l)1Ti

j;i

and
N R
1: 1: 1r - n(n-l)
i j;i ij



and the sample
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Since the HT variance e~timator is not always non-negative. it is useful
to consider the Yates and Grundy estimator of the variance for the HT esti-
mator of the total. This fo~ may be obtained by using the fact that

The Yates and Grundy estimator is

estimator using L2(S) is
A (wiwj-Wij) Yi Y~ 2

v(Y) - t t -------- (- - ..••.)
i j~i wij -1-j

This expression for the variance of the HT estimator is not always non-
negative for all sampling schemes. but is the simplest of the unbiased
variance estimators which has been identified for several sampling
schemes. In addition. when all Yi are ~qua1. the variance is zero
which is not the case for the HT expression for the variance.

A

The estimator of the variances of YRHC

2
n Y P

E(t ...!..!)
2Pt

Hence

2"2 •.An estimate of Y • YRHC - v(YRHC) (by definition)
•• A

where v(YRHC) "is the unbiased estimator of V(YRHC).

n 2
A (tN

1
-N)

v(YRHC~ - N(N-1)

An unbiased estimate of the sample variance for tIleMurthy Estimator
given in 2.2.2 (e) is:

•. 1 n n
v(Y) • --- t t {P(S)P(Sllj)-P(sli)P(sl j)}.

[p(S)]2 i-1 j>i
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I thwhere peS ij) is the conditional probability of getting the S sampl~
given that the units Li and Lj have been selected in the first two draws.

A result which will be useful in multi-stage sampling is given here
to indicate a general method fo~ estimating the variance.
Rule 2: Find an unbiased estimator of the variance for the single-stage•..
design. Obtain a "copy" of it by substituting Yi for Yi (primary total).
Also, find a copy of the estinator of Y in single-stage sampling by
substituting vi for Vi. The sum of the two copies is an unbiased
estimator of the variance.

4.6 Estimation of Variances in Multistage Sample Surveys
4.6.1 Two Stage Designs - EPS and ~OR at both stages (4.2.1)

In formula (7) there are two terms to be estimated. We rely on
the results from single-stage theory and use conditional expectation.
From 4.2.1

consider

(13) V(Y) (1 -

1.--n-l

sin~e we observed in single-stage using EPS-WOR sampling that the sample
"copy" provided an unbiased estimator.

We consider the conditional expectation for a given set of Vit
which im~lies Hiy! are fixed and seek to derive the be~een primary

component. Rewriting in weighted variable notation. we have

..
• '__1__ r H2-y2 _ NY,2

N-l i i
i

(by deBni tion)

and V(Y') I:M2 V(Y
i
)

i i



(14)

52
1I1i i

since V(Yi) • (1 - --)~\ mi

_ y2
NV(Y")-N 2'

N

This aCCOU:lts for the between primary
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term in (14) which has arisen.

M2 m
expectation E i (1 - -1)S2 based on single stage results.

i m1 Mi i

N2 ncomponent except for the factor n (1 - N)' A

We now estimate the within primary component of V(Y) minus the second

M2
i mi 2To estimate the first term of (13) use E~i (1 - --)s which has

i roi Mi 1

So 2 r:I 2 2
_ A •• 2

v(Y) N .•Hi
(1- .-!.) s +!! (1 - .!l) t" (MiYi-Y )

• - E -- n-ln 1I1i Hi inN

is an unbiased estimate of V(Y), and a "copy" of (13) • However, the
magnitude of the between term is the same as in V(Y) since it is summed
over n and divided by n-l while the within term is summed only over n
and not N.
4.6. 2 ~~_StaRe Desi~~~lecting Primaries Hi th Replacement (4.4.1)

We examine the general estimator described in (4.4.1) and state the
following theorem.
Theorem 5: An unbiased variance estimator of Y 1s

1
v(Y) • n(n-l)

where Y1 1s the primary total and Pi the probability of selecting the
primary in WR sampling.

YiSince each of the n estir:l3tes,i.e., Pi • of the population total
are independent.

but A
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1 - Yi 2
(Y) -- I'(- - Y)•• v • n(n-l) Pi

4.6.3 Two Stage Designs - Selecting Pri~aries Without Replacement
(A) We now examine the gen'~ra1 estimator given in 4.4.2. Using L2(S)
for the first term and Theorem 4 for the second term with EPS at the
second stage.

2
A W W -w Y Y s

v (Ye) • t' I' ( i j i j )(..J:. _ .:i)2 + I' ..J:.
i j~i wij wi wj wi

When sampling is with equal probabilities at the first stage

n(n-l)
1rij • N(N-l)

and
n.-N •

n N-n 1In this case 1ri1rj-Wij - N [~ • N_lJ>O.
hence the variance is always positive.

A

(B) We now examine the estimator Yl discussed in section 3.3.1 which
was shown to be biased unless all primaries were of the same size.

~ 1 -Y1 • - t'y or is the average of the estimated primary means.n i·

An unbiased estimate of the bias is provided by

N-l ~ A

NA(n-l) I'(Mi-Mn)(Yi.-Y1)
It follows that an unbiased estimate of the population mean is obtained
from the primary means by

These results on the bias will be required for the mean square error by
adding the bias squared to the variance.
To find the variance

2Using (7) of section 4.2.1. modified for the mean (i.e .• division by N )



and
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A • _

since Yl and Yi are unbiased c~timates of YN and Yi.

where
2 1 N - = 2Sb ••N-l t(Yi-YN)

2 1 Mi - 2
Si II: Mi-l t (yij-Yi)

The sample estimator of the variance based on 4.2.1 page 39 is a "copy"
of the above population variance

and the estimated mean square error is
~ ~ 11# - - ~ 2M.S.E·(Yl) c v(Yl) + [NM . n:r t (Mi-Mn) (Yi-Y1)]

~.4 Three Stage Sampling - Unequal 1st and 2nd Staee Units with
EPS-'10R sampling at all sta~(3. 2 .1)
Consider the unbiased estimator of the mean

A 1 n Mi mi Kit kit
y. -t-t -t Y

n i mi t kit h ith
As pointed out in 4.3.1

A A A

V2(Y) ••E2V3(Y) + V2E(Y), hence we can extend the results any two

stage design to get the variance for a three stage design where the first
stage contribution to the variance will be unchanged. Since simple random
sampling is employed at each stage, we may repeatedly apply Theorem 4 and

2write the variance of the mean from 4.3.1 by dividing by N or in terms
of means at each stage as below:

2 2
v(Y) _!(l - !!.)S2+ L toOMi(l _ mi)S2 + L t"Mi t"Kit(l

n N 1 oN mi Mi 2i oN t mi t kit
where

A2 1 n - ~ 2
51 - n-l I:(wiyi..-Y)

A2 1 mi - - 2
S2i ••mi-l t (vijYij.-Yi ••)
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"253it -

and the subscripts 1. 2. 3 indicate the stage which gives rise to the
contribution to the variance. and Wi and vij veights based on the number
of third stage units in the primary and secondary.

th
w • _T_o_t_a_l_N_o_._3_r_d_s_ta~~~e_'_u_n_i_t_s_i_n_t._h_e_ip_r_i~,
i Average No. 3rd stage units per primary

No. 3rd stage units in the jth second~ and ith primary
vij • Average No. 3rd stage units per secondary in the ilh primary

4.7 Effect of Change in Size of Primary Units
We consider a special case in which all primary units have the same

number of secondaries; that is Mi • constant • M. We also suppose that
the primary units can be combined to give N t C n~r primary units of
size C·M. The variance of the mean of the original population with N
primaries and M secondaries can be expressed as

2
(A) V(y-). NM-l L [1 m(m-l) p {(N-n)m (M 1) _.M-m}]NM nm - M(N-l) + 1 (N-l)M - M
and for ~he variance of the altered primary size

(B)
2V"<y) - NM-l L [1 _ m(n-l) + P {N-nC ~ (HC-l) _ ~}]NM om M(N-C) 2 N-C HC MC

Subtracting (B) from (A) we conclude that

V(y) - V"(y) ~ 0
whenever PI > P2 provided both PI and P2 are positive. and where PI and

P2 are the intra-class correlation within the primary units. That is.
a gain in precision is brought about by enlarGing first stage units
whenever the intra-class correlation (1) is positive and (2) decreases
as the size of the first stage unit increases. Also the smaller P2
the larger is the gain.
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Chapter V. Stratified Sn~pling

5.0 Introduction
We have studied schemes of selecting sampling units from the entire

universe in order to estimate the mean or total. If the population
characteristic understudy is heterogeneous or cost limit the size of
the sanp1e, it may be found impossible to get a sufficiently precise
estimate by taking a random sample from the entire universe. In prac-
tice, the main reasons for stratification are: (1) variance considera-
tions, (2) cost constraints, and (3) the need for information by
subdivisions of the universe (i.e., States, counties, size croups, etc.).

We suppose it is possible to divide the universe into parts or
strata on the basis of sone characteristic(s) or information which will
make the parts more homo~eneous than the whole; that is, information
must be available for classifying each sanpling unit in the universe
into more homogeneous groups or strata. As a result, it should be
possible, by properly allocating the sample to the strata, to obtain
a better estimate of the population total. Therefore, we propose to
answer as best we can the following questions in this chapter:

(1).lIow should the sample data be analyzed?
(2) lIow should the strata be constructed?
(3) How many strata should there be?

and in Ch~pter VIII, we answer
(4) Hml should the total sample be allocated to strata?
This treatment of stratified sampling is somewhat brief and a

departure frOM the more detailed development generally given. HmJever,
the theory is largely a straight forward application of the theory
previously developed for the entire universe, but applied to ~ndividual
stratum. TIlese results are confined to a single survey variable but it
should be realized that in practice surveys are multivariate in nature.
We have attempted to setforth only the principles to be considered
since there. is either appreciable "art" involved in applying the
techniques in practice or considerable prior data is required to apply
the theory directly for multivariate surveys.



A ~ N-n 2 L N-~ S2V(Y) - V(y S) - -- s r hnN ~Nh h
whe re 2

S2 _ L NhSh L Nh (Yh _Y) 2I --+ r-N N

From this last equation, we can see that the
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5.1 Estimation in Stratified Sampling
A universe of N units is divided into L strata so each unit is

thin one and only one strata where the h stratum contains Nh units

L
with a total Yh for the survey characteristic y, and l:Nh- N. In
each strata a probability sample is selected, the saQpling in one
stratum being independent of the saDple selected in the other strata.
Let :h~be an unbiased estinate of Yh, based on a sanple of size nh; ~also
let V(Yh) be an unbiased sample estimate of the stratum variance V(Yh).
Applying the theory derived in Chapter II, III and IV to strata, we have

L~ ~ 1 LA 1 ~
(1) Ys - l:Y and Y - i rYh - N r Nh Yh 'h S

L L (Nh-~) S2
(2) V (Ys) - rV(Yh) - r N2 h

h Nh 'it
LA A L (Nh-~) 2

(3) V(Ys) - rV(Yh) _ r U2 s
h Nh ~

That is, the estimates of the strata totals and variances add up to the
population total and variance for each characteristic. Thus, no new
principles are involved in analyzing the data if estimates can be made
within each stratum. Of course. the usual relationships hold between
the variances of totals and ~eans based on the division by N2 and N~ in
(2) and (3) for the universe and individual strata respectively.

5.2 Formation of Strata
~~If we look at the difference of the variances for Y and YS or Y

and Ys using EPS-WOR sampling, we have

2snaller the values of Sh '
the smaller the variance will be. Also, the larger the differences in

2the strata means, the lar~er S will be, and the gain in sampling from
a stratified population over sampling from the entire population will
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be increased. Thus, if all prior knowledge, statistical judgnent, and
available data can be brought into play to achieve similarity within
strata and increase difference~ between strata, a reduction in variance
can be obtained. The best infornation for stratification is usually
data on the characteristic y being estimated for some previous tine.
However, a search is usually necessary just to find ~ variable which
is highly correlated to y, possibly from a previous census. Commonly,
a geographic or political subdivision information nay provide the only
basis for forming strata.
5.2.1 "Exact" Solution

If the distribution of y is known from previous data and a given
method of allocating the sanple to the strata is specified, the variance
to be minimized is a function of the strata boundaries or division
points. Consequently, the boundary points will have to be found by
iterative procedures until a minimum variance for the population
characteristic is obtained. With a high speed computer, this type
of solution is feasible though seldom krtown to be applied.
5.2.2 Approximate Solution

A solution due to Dalenius and Hodges is based on the argument
that the distribution of y within strata can be assumed to be rectangular
if the number of strata are large. This means that the points Yh (strata
boundaries) are to be obtained by taking equal intervals of the cummu-

latives of 'fey) (i.e., square root of cum. frequencies). Ekman pro-
poses that the points Yh satisfying

Nh
~ (Yh-Yh-l) - constant

will provide approximately the optimum points of stratification. The•.
above is applicable when the unbiased estimator for Ys is used. \.fuile
these approxinate procedures are iterative in nature, they readily yield
solutions with a conputer. The necessity of having the frequencies of y
by size available for the population of sampling units is seldom realized.
At best, a variable x which is highly correlated with y is all that is
usuully available. In geographical stratification, the selection of
strata boundaries is less amenable to mathematics and are usually based
on available data.
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5.3 Number of Strata
In 5.2.2 the procedures require a large number of strata which for

a given sample size iMplies L c?nnot exceed n, if all strata are to be
sampled. Many survey statisticians favor the use of this large a number
of strata. However, when the stratification for y is made on the basis
of another characteristic x a large number of strata may not bring about
a proportionate reduction in variance. At best, as L increases the
variance decreases inversely as the square of the number of strata, i.e.,

Nh 1 nwhen the L strata are of equal size based on y, with ~ = Land nh - L
nLetting L - 2 would appear to be a useful upper liMit on the number of

strata (See 5.5). H1th a related variable x and a linear relationship
between x and y, Cochran gives some evidence that little reduction in
variance is to be expected beyond L - 6. ~~en geographic areas or
political subdivision are used as strata, the fact that infonlation is
needed by strata may determine the minimum number iOfstrata. Likewise
if an increase in number of strata leads to reduced survey costs, an
inc~ease of L beyond 6 may be advanta~eous.
Latin Square Stratification

This topic is also referred to as "deep" stratification or tWO-\olay
stratification. It is designed for small sanples lolhereit is desired
for the sample to give ~roportional representation of each criterion of
stratification. This requires that each of the N universe units be
classified into a two-way table so the frequencies of the N units in
each of the R.C cells can be determined. To achieve the proportional
representation, the sample size n leads to the construction of a two-
way table wi th n rmolSand columns derived from the R-rows and C-columns
corresponding to the two criterion for stratification. To estimate the
mean, a value for n ~ R·C is required and n ~ 2RC to estimate the vari-
ance. The york by Bryant, Hartley and Jessen is described in detail by
both the original authors and texts on sampling.

5.4

A

V(YS)
A

V(Y).--
L2
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Earlier techniques for this probleM were called controlled selec-
tion, but while these ideas were doubtlessly attractive as a means of
securing preferred types of samples they did not always lead to designs
with known precision. In situations where the selection between strata
is not ~ade independently but in a dependent manner has been used by
Goodman and Kish. In this procedure the joint probability of the pre-
ferred combinations of units from two different strata (Pij) is different
than zero vhile the non-preferred pairs have Pij • O.

5.5 Method of Collapsed Strata
As indicated in 5.3, survey statisticians favor using a large number

of strata for highly heterogeneous populations. When the number of strata
used is equal to n, only one sampling unit can be drawn from each stratum.
In this case, it is not possible to estinate the variability within each
stratum. In such a case an approximate estimate of the variance of the
estimated nlean is obtained. The method consists of grouping pairs of
strata whose means do not differ very much from each other. Assume that
L is an even number so we have k·L~·2 pairs. Suppose the selection within
strata is EPS and Nj and Nj~ are equal. That is, the two paired strata j
and j' are of equal size so the probability of selection is the same.
Then consider for the variance

V(y)
k 2 2
tNj (yj-yj ~)
j

which has expectation as follows

(4)

which shows that our variance is over-estimated. The extent of the over-
statement is such that it is debatable whether the smaller strata are
preferable. If the selection within a stratum is with probability pro-
portional to some variable x, then

is likewise an over-estimate of the variance

where the capital letter Y represents a estimated total. If the above
variance (4) is cOl'1paredwith the variance for a sample with Lt2 strata

/.
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and two units per strata, the variance (4) overstates not only the true
variance with one unit per stratum but also the variance if ~he strata
were twice as large. It is probably preferable to have only nf2 strata
which are larger with 2 units per strata.

5.6 Post Stratification
In sone surveys, it is not possible (or very c:ostly) to know the

stratum to which individual sampling units belong until aiter the survey
data has been collected. This technique may also be useful for a sample
that has been stratified by one factor, such as geographic regions, and
post stratified on a second factor within each of the first factor strata.
The stratum size Nh may be known froo official statistics, but the
stratification characteristic for the units may not be available. In
this case, a probability sanple from the entire population is selected
and the units are classified into strata based on survey data collected
for this purpose.

The population total is estimated by
L .=Y - ENh Yh

This total (or mean) is almost as precise as proportional stratified
samnlinf <i.e., ~ f Nh - constant) if the sample units classified into
each stratum is reasonably large, say greater than 20. Let ~ be the

thnumber of units falling in the h strata for a particular selection
where ~ will vary from sanple to sample even though n is constant.
Since ~ is a variable while ~ is fixed, the variance will be increased
over stratification which is inposed prior to selecting the sample. If
n is moderately large so the probability of ~ being zero is very small,

-2an approximation of order n is available. Since
Nh

1 - N N- --
N2 nNh2 h

n
N2

1- ---nNh
N

N-N
(1 h)

nNh

hence,
V(y) _ !!(N-n) ~N S2 + (!!) 2 ~t-Nh

) 52
n N h h n N h

where the first term is the same as for proportional stratification and
the second term arise because the ~'s are not distributed proportionally.
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5.7 "Domains" or Subpopulations in Stratified Surveys
We discuss domain estimation in this chapter because it is an

extension of the post-stratifi~ation principles and the theory for
simple random sampling is a special case of the theory for stratified
random sampling. But, stratified domain estinators are not generaliza-
tion of si~ple random sanpling. This subject is treated more fully by
Hartley (1959) in Analytic Studies of Survey Data. Where subpopulations
or "domains" are represented in all strata, we may ,,,ishto estimate the
domain total or mean. The circumstances are similar to post-
stratification in that we cannat identify which domain a sampling unit
belongs to until after the survey has been completed. However, it
differs in that Nh is known in post-stratification and can be used in
the estimators of the total and variance, but the corresponding sub-
population size is unknown in domain estimation theory. Of course, the
stratification estimator should be used if the units can be cla5sified
before sample selection or post-stratification theory if Nh is known
but sampling units cannot be classified until after the survey.

The dOMain notation is indicated on variables and population
para~eters by preceding the letter by a subscript j(j • 1, 2t ••• K) for
each of the subpopulations. Other notation is the same as in previous
sections. The strata might be geographic regions and the domains
irrigated and non-irrigated farms.

The survey characteristic is defined from the standard stratifica-
tion theory as jYhi where

th thYhi if the i unit in the h strata belongs in the
thj sub-population

o otherwise
th thj~ • the number of Yhi in the h strata belonging in the j

subpopulation
where both jYhi and j~i are treated as random variables.
The domain total is estimated by
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The variance of the total is estimated by

L
V{jY) - I:N

2

h h

provided

The sample mean 1s estimated by first estimating the donaln size jN and
deriving the mean from

A

A "Y
jY - ~ which is the ratio of two random variables.

j

The domain size is estimated by first defining a "count" variable
jJ.lhi as

I if the ith unit in the hth strata belongs in the
thj subpopulation

o otherwise

The estimator for jN is

•• L Nh
j N .' E ~ j ~

Hence, the mean is estimated by a ratio combined over strata

(i.e., a combined ratio estimate)

The variance of the mean is estimated by
2

•• A ~N2 (Nh-"h) {{jnh-l)jSh + jPhjqh -2}
V{jY) - h Nh (nh-l)nh ("h-1) jYh

where
j Ph - j"h and j qh - 1 - j Ph. '

~

The above theory is the direct result of substituting jYhi for Yhi in
the standard theory. The results for simple random sampling is obtained
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Chapter VI. Use of Auxiliary Data in Estimators

6.0 Introduction
In Chapters II and III the use of auxiliary data was employed or

could have been enployed in selecting saMpling units with probabilities
proportional to size. In Chapter V, we considered employing auxiliary
variable(s) or information in the construction of strata. In this
chapter, we consider a third way in which we can use auxiliary data--
in the estimator of the population total or mean. The use of auxiliary
information brings ahout consideration of the use of biased estinators
of totals, means, and ratios.

The use of ratio estimators will be explored first because ratios
are of interest in two respects: (1) the ratio itself is of interest
since we ~ay wish to know the pounds of rice per acre, or (2) the ratio
of pounds of rice produced, y, to acres of rice, x, may be less variable
than the y's themselves and hence the ratio may be utilized in estimating
production where there is a known total acreage of rice; that is, we shall
use auxiliary information to achieve higher precision based on a ratio
estimate.

As an alternative to using auxiliary information in a ratio, we can
also consider difference or regression type estimators where a linear
reJation~hip between y and x exist. Both of these estimators may be
preferable to a ratio when the linear relationship does not pass through
the origin. In recent years, the discussion of biased, unbiased and
approximately unbiased ratio estimators has received considerable atten-
tion in the literature. We will discuss each of these briefly before
turning to the consideration of regression type estimators.

6.1 Ratio Estimators
Notation and Definitions:

Population of Distinguishable Units Sample
Uni t labels }.II'}.I2 , }.I3 , }.IN To tal Mean Total Mean
Characteristic Yl, Y2' Y3, YN Y Y Y Y
Auxiliary

ivariable xl' x2' x3' ~ X x x
R -Ra tios rl, r2, r3, rN R r r

where
Yi l\i-

y and Y..ri -- r -Xi X
M x
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Y or Y is to be estimated from a sample of size n, and X and X are
known exactly. To use the ratio estimator, the hypothesis is needed
that the relationship between y and x passes through the origin.
6.1.1 Ratio of Means

YThe ratio of means '\1 - =- is the "classical" ratio and is biased
X

except under special conditions. We should enphasize that ~ is an
overall rate while R is an average rate per unit in the population.
This distinction is of inportance if we are interested in the use cited
in (1) rather than (2) above.

We consider the bias of Y and ~ which can be found usinr, the results
of Goodnan and Hartley fron the expression for the covariance of ~ and
x. For EPS, we have

Cov(:' x) - E(~ x) - E (:')E(x)
x x x

Rearranging terms

E(:')E(X) - E(y) - Cov (:. x)
x x

Or
X E (1)'1) - Y - Cov(:' x)

x

E(l)r) - ~ - ~ cov(~ x)
X x

The bias is:

1 .. -B(R_) - E(R.) - R - - =- Cov(R_ , x)-11 .1 -1'1 X -11

which is zero if Cov(r~ ' x) - 0, i.e., the correlation is zero.
If we express the Cov(~ ' x) as pa(~I)a(x) then an upper bound on

the bias can be readily found in te~ of the coefficient of variation
of x. That is:

.. a (1)1) a (x)
B (1)1) - - p

Xor
B(~) o(x) C.V.(x).. - - p --- - p
a(~) X
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Since Ipl ~ 1, the relatjve and absolute bias are:

< C.V.(x), and IB(~)I
.•.

< C1(~)C1(x)
it

llence, if the C.V.(x) is small, the bias will be negligibly small.
We make

-~c.V • (x) - V nN
sx s~all by our choice of the sample size n.
X•..

The bias of Y is XB(~). In the foregoing discussion y and x may be
replaced by y and x.
The IB(~l)1 is of order (~) since both C1(~) and c(x) contain the
factor LIn
An approximate expression for the bias of ~ based on a.sample of size
n is obtained by retaining the first two terms of the Taylor expansion
of

E<Y-l)~)
f(9) • ---

X+9(x-X)
- - 2 -pc(y)C1(x)-l)f (x)

x2
or .- -

around 9 • O.

.....
6.1.2 The Variance of Y • V(X~)

......
where the V(~1) was given in Chapter 1. The V(l)l) • 0 if Y is pro-
portional to x.
In general, the variance of any
by "plugging" iriy - R x • ~i -ll i i
of sampling that has been used,

ratio (in this case ~1) can be obtained
for Yi in V(Y) re~ardless of the type
i.e. ,

VCR ) • N-n s2
-ll i2Nn ~i

This can be seen by examining
... y-~ y-~

E(l\t - ~) • E(__ )2 • E(__ )2
it X+6X
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where ox - x - X
Then the mean square error is the value at e • 1 of the function

f(0) • E?-l).r\2
x+eox

Developing Taylor's expansion of fee) we get
- - 2E(y-R..x)

E(R~-R..)2 • 11
•1 -2X

- - 2 -2E[(y-\tx) ox]

-3X
+ ...

A first approximation to the mean square error is obtained by retaining
only the first term which is of order 1. A second approximation is

n
obtained by retaining both terms.
6.1. 3 }lean of Ratios

The total is estimated by

However, the behavior of the ri's may b~ erratic and Y Is very badly
biased.
It should be noted that the use of the covariance in 6.1.1 to obtain
the bias of the ratio can be generalized to any type ratio. Hence,

and

1 Yi
B(R) - - - Cov(-- , xi) •X xi

1
X

However, the bias of the total Y is obtained as
..

B (Y) <

o(ri)X
.. _ o(ri)but o(Y) • X oCr) • X ------rn replacing o(r!) above

.. ..
I B Y)

Iii 0 (Y)

<

and IB(~) < In C.V. (Xi).
o(Y)
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That is, the bias as a proportion increases with ;.n-. Consequently,
~ is much preferred to R in esti~ating the population total'Y even
though the variance is of abou~· the same magnitude. The approximate
variance can be obtained by "plugr-inp,"in Yi-Rxi- Bi for Yi to find the
variance as was done for V(~) earlier. However, we shall return to
the consideration of ri when we seek approximately unbiased estimators
of ratios.

6.2 Unbiased Ratio Estimation
In view of_the fact that, under simple random sampling, the ratio

estimator Y ••XY is biased, w~ wish to consider modifying the sampling
x

procedure so the same estimator beco~es unbiased. This can be accomplished
by selecting the sample with probability proportionate to its ap,gregate
size. This can be best done by selecting the first unit in the sample
with pp to x and the other (n-l) units with equal probabilities without
replacement. Under this procedure of selection, the probability of
selecting a particular sample(s) of size n is given by

E"'x (n-l)!(N-n)! E~x
peS ) i i•• ••n X (N-l) (N-l): EXin-l

6.2.1 The F:stimator of the Popltlation Total

unbiased since the expectation over all possible

Y ••
t"'Yi

XYx---E'xi x
which can be shown to be
samples

S t"'Y
i

E(Y) ••tn X • I "'xi - Y

6.2.2 TIle Population Variance
Using the Most general form given on page 11, Section 4.1.4 for

unbiased estimator

N'
V(Y) - I T~ pes!) _ y2

i=l
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x----
(N-I)
n-l

which 1s zero if Yi is proportibnate to xi. In the variance P(Si) is
the same as peS) for a particular sample of size n. The total nunber

n
of samples of size n is N'.
6.2.3 San~Estirnate of the Variance

2An unbiased estinate of the second tern Y is given by

+ • peS )n

Hence

2 ..
- Y - V(Y)

The estinator of the variance cay ~ssuoe negative values for some of the
S samples.n

6.3 Approximately Unbiased Ratio Estimators
We QPW return to the ratio estimators considered in 6.1 and try

to remove the bias. This work follows that of Hartley and many others.
"Ie consider r

I'ri 1 Y
r --- - r,2-n n xi

and remove the bias.

Y- -- -

6.3.1 An Unbi<1sed

x

Estimator of the Ponulation Mean
YiCov(- , Xi)xi
E(Xi)

Y1Cov (- , xi)xi
x

(x known)

From earlier results we note that
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S~ and s; are estimated unbiasedly. Also,

2 1
Sy+x •• -N--1

- - 2r(y +x -Y-X) is estimated unbiasedly by
1 1 i

8
2 + s2 + _2_ r'(Yi-Y) (xi-x)
y x n-1 i

Yl R)(X1 - X)
Yi

N(- -. , xi)
xi. . Cov(- ••xl N-1

is estinated unbiasedly by
y i - -(- - r) (x -x)n xi i N-1t'" n-l -

1 N

Hence tge mean is estimated unbiasedly by

N-1
N

j'" _ Xr + N-1
N

Or
~ -- N-1 n - --
y'" - Xr + - - (y - r x)N n-1 [Hartley-Ross J

~onsequent1y an unbiased estimator of ~l is available upon dividing
Y'" by X.

The variance for large N is given by
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However, the second term is usually ne~li~ible and the large sample
approximation to the variance of the ratio takes the usual form.

V(RM) -
2RpS S

V x

6.3.2 An Unbia~ed Estimator for ~1 for Larr,e n (X unknown)

v x)Cov(:- ,
E(~)

y xa -_

X X X
x -X

"Assuming N..••••and 6xi
ia--

X
is small then it can be F;hmm that

Cov(~ , x)
x

If Cl + C2 a 1, then
YiCov(- , x)

E(Clr + C 1.) y xi
a - -2 - X itx

and determine C's such that Cl + 1C a O. Solving these two equationsn 2
for Cl and C2 we obtain

c. 1 and1 - n-l
n

C2 - n-l
yTherefore an unbiased estimator of - a l\t is
X

This is unbiased only as far as the approximation of the covariances
is correct. An alternative derivation is also available for an

yapproximate unbiased estimator of -. This development follows from
X

6.3.1 where X is replaced by x. If N is large in the expression on page 7
for the Hartley-Ross estimator, then

..Y"
- a

x

- N-lr +--N
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-
which reduces to n~l (~) - n~l r

x

However, this is ~n approximately unbiased estimator which is an
improvement over ~ if the coefficient of variation of x is small

x

because the bias is now of a smaller order •
•.. •..

The difference in the variance of ~t and 'RM is

...... (~ - i2) si - 2pSXSy (l\t-i)
V(l).t) - V(RM) - --------- ni2

[(R _S)2_(i_B)2]S2
-If X.----------ni2

where B is the regression coefficient of y on x. Consequently, for...
large n we see RM will be more efficient than ~ if and only if B is
nearer to R than to~. If the two ratio are equal, the two variances
~re equal. In practice, it will be unlikely that this will be known.
6.3.3 Quenouille Method of Bias Reduction

A random sample of size 2n is split at random into two sub samples
each of size n. Based on the two subsamples and the entire sample,
we construct an estimator of the ratio

- -Yl Y2 -
RQ • WI ::- + W2::- + (1 - Wl-W2) ~

Xl x2 x

which simplifies because of equal sample sizes so WI • W2 • Whence
- -Yl Y

~.~+H~+
Xl x2

The bias in the estimate to the first degree approximation will be
zero if

W (N-2n)
• - 2N

Hence, an approximately unbiased ratio estimator 1s

i . (2N-2n)
Q N

-I. _-x

I,

(N-2n)
2N

(N-2n) Y2
2N -x2
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-
• 1- 1 Yl
- 2 - '2

x

With some effort, it can be shown that the mean square error of RQ is
approximated by

M.S.E.(RQ) - (.L _ 1)(i)2 [C2 + C2 - 2pC C ]2n N - Y x y. x
x

where C2 and C2 are the square coefficients of variation of y and x.
y x •.

Since this approximation is of the same order as the M.S.E.(R), this
latter esticator may be preferred. To estimate the mean Y, we still
require knowledge of X.

The Quenouille method is probably best when we use groups of size
one, that is, the estimator becomes

R _ r;i- _ n-l
Q nx

t'
i

n- - yy i

leads to a specific estimator.

However, the variance cust be obtained by Taylor's Expansion.
6.3.4 Mickey's Estimator - A generalized estimator of the mean

- N-aWa - a(~a) X + N(n-a)
where the choice of aCe )a

(A) Let a(i! )
1 a Yi- - 1:a a xi

if a - 1 a(e )
Yl--a xl

Averaging over all possible selection of units

* 1 n
W - X - t1 n + (N-l)n

N(n-l) (y- r x )
n n

- X r + (N-l)n (y - r x) [Hartley-Ross]
N(n-l)



(B) Let a ~ 1, then a(~ ) in the estimator becomes randa a

Averaging over all sanples of (n)a

w* - r X + (N-a)n (y - r x )a a N(n-a) n a n

For a - n-l, we probably have the best estimator
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If X is nornal and regression passes through origin this estimator
is nore efficient than Hartley-Ross.

6.3.5 The Product Estir.1ator
Although sir.1ilarto the ratio estimator, it is much less frequently

us~d. Generally, the mean per establishment is desired and we wish to
estimate estimator of the mean in EPS-WOR is:

y - v • X (~)
X

which is biased, but useful for many purposes.
The bias is given by

The approximate variance is given by:
1

V(~) - X2V(y) + y2 Vex) + 2YXp [V(y)V(x)]2

In the product estimator the position of X is in the denominator while
in the ratio estimator X is in the numerator. The product estimator
depends on a negative correlation between y and x to be more efficient•.
than the simple estimator of Y. The sample variance can be obtained
by using analogous sample estimators for the parameters. The approximate
variance is:

I.
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6.4 Ratio Estimator in Multistage ~ampling
We consider the ratio estinator

.• Y
~ - ~ where Y and X are unbiased estimators of the totals for the

X

sampling scheoe employed.
The variance of the ratio estit:\atoris obtained by "plugging" in

Yl - Rxi - ~i for Yi in the formula for the variance of a total, V(Y) ,

... 1 A ••••••

resulting in V(~) - -2 V(Y-RX).
X

6.4.1 Two Stage Sar!pl1ng_- EPS-HOR at both stages
The totals Y and X are estimated by the method of 3.1.1 •• that is

Y".N""Mn l. iYi
Hence

VCR) 1a- -2X

and
.. - 1 ..

- ~ X • N t(Yi-Yi)
6.5 Ratio Estioator in Double Sampling

It happens frequently that the population ~ean X is not known,
hence the usual ratio estimate P~ cannot be made. It is common in
such a situation to use the technique known as double sampling. The
technique consist in taking a large sample of size n' to estimate the

A

population mean X (assuming X is cheaper to observe than Y) while a
subsample of size n is drawn from n' to observe the characteristic Y
under study. The simplest estimate of the Mean is the usual biased
ratio estitJator.
6.5.1 The Classical Ratio: x ,n

is based on the small sample of size n. The relative
xn
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bias of this estinator is:

B (~") • (1. - 1..•)( C2 - p 0 C )n n x x y

C
Y

if the sample si~e n is sufficiently larr,e
zero if the regression of y on x is linear

where C and
x

negligible
It will be

are the coef.ficients of variation. The bias is
so C- is small.x
and passes

through the origin.
~ ~

The variance of Y" may be more efficient than the estimate of Y
based on the small sample n. The variance is given by:

V(~") - (1_ 1..•)(S2 + R~s2 - 2R_ S S )n n • y -11 X -li Pyx
which will be scalIer than the variance of

,. C I
V(Y), if P ...L > -C 2x

6.5.2 An Unbiased Ratio-Type Estimate

i....· r x .•+ n(n"-l) C - i)n n n"(n-l) Yn - rn n
and the variance is approximated by

+ (1. _ 1..)S2
n n y

S2
V(~"") • (1. _1 ..)(S2 + i2 62 - wR p S Sx' +..;

n n y x y n

6.6 Regression Type Estimators
The ratio estimator is best when the relationship between y and x

is a straight line through the origin, so y - kx • O. If the relation-
ship is of the type y - kx • a, it is more appropriate to try an
estimator based on differences of the form Yi - kXi • ~i' Such
estimators are called difference estimators or the "working" regression
slope theory. The value k is determined or guessed a priori and we
expect the V(~) to be less than the V(Y).
6.6.1 Difference Estimation - EPS- WOR

This unbiased estimator is called a regression estimator only
because it can be put in the form

Yk • y + k(X - x)
which resembles a regression estimator evaluated at X. Now the variance
of Yk equal the variance of ~ regardless of the sanpling scheme. i.e.
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V(Yk) - V(~). The standard fornulas which apply to ~t all apply to Yk.
Further

The e::.timateof k is determined a priori and must not be revised after
samplii c; has begun. The value of k which will minimize V(~) is

pS
k - B - -Z the population regression coefficient.Sx

The difference estimator is superior to the simple average y if

S
k s~ (k - 2p i'-) < 0 or k(k - 213)<0. That iSt H k lies between 0 and 26.

x

If we consider the ratio of the difference between V(~) and V(~ i )m n
divided by V(~ i ) we obtainm n

2
(k _ 1)2 ~ ~ e. If ue can specify e - .1 and p - .7t then
B I_p2

I:- 11 ~ vi 0(~;p)2 and k should be between .68 and 1.32.

6.6.2 Difference Estimation in Stratified Sampling
A different value of k can be used in each stratumt i.e.t we denote

the value as ~ for the hth stratum.

The population total is:
L

U - Y - t ~~
h

and the me an:
L ~Nh~

U-y-t-
N

--
h

L N
Yk - ~ + ~ Nh ~~ where ~ is known.
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6.6.3 Reeression Estimation
Instead of deternining k a priori, the population regression co-

efficient B is estimated from'the sample. The sample estimate of B is

b •
t I(xi-x) (Yi-Y)

I - 2t (xi-x)
and the esti~ator is

y • y - b(x-X)B
Since b is a random variable, exact expressions for the expected value
and the variance of the regression estimator are hard to find. The
large sample approximation to the variance Is

n •

6.7 Multivariate Auxiliary Data
Instead of a single x variable, we now consider two or more x's.

6.7.1 Difference EstiMators
Consider forming a difference estimator for the mean of y based

on ~ach ~f the x-variables, and then combining them using appropriate
weights. We form each estimator of y as

i • 1, 2••P

Let Wi be weights adding to one. Then
p

y • tWiti is an unbiased estimator of Y. Its variance is given by

Chapter 1.

Defining S as the covariance between p and v and letting a,I,••p standpv
for the variates Y1,x1, x2' •••xP respectively, we have

An unbiased estimator of the variance is given by
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Let
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6.7.2 Ratio Estimation
We form ratio estimators instead of difference estimators as in

p
the preceding section and weight these together so ~Wi-l.

and

The estimator is biased and the expression for the variance is only
approxinate in the same way that 1).[ and V(\t) were.

Hickeys Estinator
a
~(Xt-X )(Yi-Y )
2 a a

aCe ) • ------a a _ 2
teXt-X )
2 a

6.~.4 ~~rnark: The estimators y, ~ X, y-k(x-X) and y-b(x-X) all belong
X

to the class of estimators y-h~-X) where h is a random variable
converging to some finite value. Thus, we have:

h • 0 for the estimator y,

h • .I- for the estimator ~,
x

h • k for the difference estimator,
h • b for the regression estimator.

6.8 Alternative Uses of Auxiliary Information
To this point, we have employed auxiliary information specifically

in three different ways: (1) Constructing the estimator, (2) Construc-
tion of strata, and (3) Assigning selection prohabilities to sampling
units. A brief sUmMary of these methods of improving the efficiency
is now presented.
6.8.1 Choice of Estimator

To facilitate conparisons, the estimators of the population total
tIe stated in~a slightly Modified form.



For the difference estimator~ we need to know N, X and bO'
For the product estimator, we need to know Nand X.

In considering the problem of estimating
is required besides the sacple means y?

(1) For the si~ple estimator, we need on~y ~,
(2) For the ratio estimator, we need only X and not N since X - NX,
(3) For the regression esti~ator, we need to know both N and X (or X),
(4)

(5)

1. Sinp1e:

2. Classical Ratio:

3. Regression:

4. Difference:

5. Product:

N[(1)(y) + O(X-O)]

N£(O)(y) + ~ (X-O)]
x

N[(l)(y) + b(X-x)]

- -- 1N[(O)(y) + yx(- - 0)]
X

the total

6-17

from a sample, what

and

It is of some importance to realize that the total cannot be estimated
unless nunber of units in the frame, N, is known with the exception of
the ratio estimator which is, in general, biased.

The efficiency of these estimators for moderate size samples (biases
negligible) depends on the magnitude of the variances. Consequently,
variance efficiency of an estinator A compared to B is defined as follows:

VE(A!B) _ Var(B) •
Var(A)

Where estimator A will be relatively more efficient than B if the ratio
is greater than 1. The efficiency of estimators 1, 2, and 3 above are
compared for the special case where VAR(X) ~ Var(Y). The variance
efficiencies under this condition are:

1
VE(2/l) - 2(1-p)

VE(3!1) .:. ~ •
I-p

Therefore, the ratio estimator is always more efficient than the simple
1 Vex) 1estimator whenever P>(I) V(y) = 2 'and the regression estimator is always

more efficient than the simple estimator when p>O. In general, the
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